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Figure 0: Whole window of OLEX2. Molecular structure of sucrose.

The molecular structure of sucrose has been solved with the OLEX2 based on ‘exp 36.ins’
made by the CrysAlisPro. This was refined by clicking ‘Refine [7]’ after determination of the
initial phases by clicking ‘Solve [6]’. ‘[1] P21’ (refer to §B.4.2) [p.41] is the space group, ‘[2]
C12H22O11’ is the molecular formula, ‘[3] a, b, c, α, β, γ’ are the lattice constants, and ‘[4] 2.49’ is
the R-factor. ‘Solve [6]’, ‘Refine [7]’, ‘Draw’ and ‘Report’ have been displayed by clicking ‘Work
[5]’. ‘⇓’ on the right of them can be clicked to open their option menus. ‘⇑’ on the right of
‘Refine [7]’ has been clicked to open the option menus shown in the red frame [8].

The molecular model can be 3D-rotated by left click&dragging, be scaled by right
click&dragging and be moved parallel by both click&dragging the mouse. Display options can
be opened by right-clicking the background. Options of an atom can be opened by right-clicking
the atom. Red dashed lines are hydrogen bonds.

Chapter 1 [p.1] describes how to download and install ‘OLEX2’, ‘Shelx’ and ‘PLATON’. Chapter
2 [p.7] and Chapter 3 [p.20] describes how to solve the molecular structure with the OLEX2.

Appendix A [p.30] describes the reasonability of defining the reciprocal lattice.
This is strongly recommended to read. The understanding of the reciprocal lattice
is necessary for crystallography.

Appendix B [p.34] describes how to determine the space group based on the extinction rule.
Appendix C [p.48] describes the definition of coordinate system and the extinction rule for the

trigonal and hexagonal crystal systems.

Version 2020.07.30E. 2019/07/30.
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Chapter 1

Download and installation of
‘OLEX2’, ‘SHELX’ and ‘PLATON’

Figure 1.1: Registrtation at the URL of OlexSys

Figure 1.2: Registration of the user information

1.1 Download and installation
of ‘OLEX2’

The user information is asked when clicking
‘[2] register’ after entering the URL whose ad-
dress is shown at ‘[1]’ of Fig. 1.1: http://
www.olexsys.org/software. By clicking ‘regis-
ter [4]’ in Fig. 1.2, you can receive an e-mail
as shown in Fig. 1.3. You can copy the sign in
URL to paste the browser to login it.

In Fig. 1.4, ‘User name [1]’ and ‘Password

Figure 1.3: Copy of the sign-in URL.

Figure 1.4: Sign in.

[2]’ that have been inputted in Fig. 1.2 should
be typed to ‘Sign-in [3]’ in Fig. 1.4.

By scrolling down the URL of OlexSys, click
‘[1] Download’ in Fig. 1.5 [p.2], please. ‘[2] Exe-
cute’ should be clicked to download and execute
‘[3] olex2-installer.exe’. Then, ‘Install’ in Fig.
1.6 [p.2] should be clicked.

1
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Figure 1.5: Download of ‘OLEX2’.

Figure 1.6: Installation of ‘OLEX2’.

Figure 1.7: License Agreement.

After finishing the installation, ‘License
Agreement’ is shown in Fig. 1.7. It should be
read to click ‘Accept’. When publishing a paper
that reports the results obtained with OLEX2,
the literature shown in the red frame in Fig. 1.7
should be cited.

For messages about ‘Help’ and automatic up-
date as shown in Fig. 1.8, ‘YES’ is recom-
mended to click.

Figure 1.8: Settings of ‘Help’ and ‘Auto Up-
date’.

Figure 1.9: Download of SHELX-2013.

Figure 1.10: No charge for Academic Use.

1.2 Download and installation
of ‘SHELX’

In Fig. 1.9, to the URL of SHELX
‘http://shelx.uni-ac.gwdg.de/ [1]’ should
be accessed to click ‘[2] SHELX-2013’ to
display Fig. 1.10. ‘Registration’ and then
‘Academic use’ should be clicked.

In Fig. 1.11, necessary items should be typed
to click ‘Submit’. Then, an e-mail in which
‘user name’ and ‘password’ are written as shown
in Fig. 1.12, is sent to the e-mail address that
has been typed in Fig. 1.11. To the URL as
shown in Fig. 1.13, should be accessed again to
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Figure 1.11: Registration of the user informa-
tion.

Figure 1.12: Username and password in the e-
mail.

Figure 1.13: Click ‘Downloads’.

Figure 1.14: Input the user name and password.

click ‘Downloads’. In Fig. 1.14, ‘User name’ and

Figure 1.15: Download of the installer.

Figure 1.16: Execution of the installer.

‘Password’ written in Fig. 1.12 should be typed
to click ‘OK’.

In Fig. 1.15, ‘install-shelx-win32.exe’ or
‘install-shelx-win64.exe’ depending on the sys-
tem of the computer should be right-clicked.
It should be saved in a newly made folder
‘C:\Shelx’ and double-clicked.

In Fig. 1.16 (b), ‘Detailed information’ should
be clicked to open Fig. 1.16 (c). Here, ‘Execute’
should be clicked to install the SHELX. In Fig.
1.17 [p.4], all programs should be checked to
click ‘Next’.

In Fig. 1.18 [p.4], installed files are shown.
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Figure 1.17: Choice of files to be installed.

Figure 1.18: Choice of files to be installed.

Figure 1.19: Registration of ‘SHELX’ to
‘OLEX2’.

1.3 Registration of ‘SHELX’
to ‘OLEX2’

In Fig. 1.19, a part of menus is shown just
after starting the OLEX2. ‘Settings’ bellow
‘Start’ should be clicked to display many items.
In the text box of ‘PATH’, the folder name
‘C:\Shelx\shelx64’ should be typed such that

Figure 1.20: How to search ‘PLATON’ home-
page.

Figure 1.21: ‘PLATON’ homepage.

Figure 1.22: Reference and the download sites.

the SHELX can be used on the OLEX2.

1.4 Download and installation
of ‘PLATON’

‘PLATON’ can be downloaded and installed
without charge for academic use.

On the Google homepage, ‘PLATON home-
page’ can be typed to find the ‘PLATON’ home-
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Figure 1.23: Downloading the PLATON.

Figure 1.24: Saving ‘platon.zip’.

page as shown in Fig. 1.21.

By scrolling down the URL, the reference that
should be cited and the sites from which the
‘PLATON’ can be downloaded, are found.

One of the download sites can be clicked to
show Fig. 1.23. ‘[1] mswindows/’ in Fig. 1.23 (a)
can be clicked to show Fig. 1.23 (b). ‘[2] platon’
in it can be clicked to show Fig. 1.23 (c). ‘[3]

Figure 1.25: Expansion of ‘platon.zip’.

Figure 1.26: Extracted ‘platon.exe’.

platon.zip’, ‘[4] ∧’ and then ‘[5] Save as’ should
be clicked to display Fig. 1.24. ‘platon.zip’
should be saved in the folder of ‘C:\PLATON’.

In Fig. 1.25 (a), ‘platon.zip’ should be right-
clicked to show Fig. 1.25 (b). Here, ‘Expand All
(T)...’ should be clicked to show Fig. 1.25 (c).
In Fig. 1.25 (c), ‘Expand (E)’ should be clicked
to expand the file in ‘C:\PLATON’. ‘platon.exe’
can be decompressed as shown in Fig. 1.26.

1.5 Registration of ‘PLATON’
to ‘OLEX2’

‘Home’ on the upper left of the window of
the OLEX2 in Fig. 1.27 [p.6] has been clicked
to open. Then, ‘Settings’ can be clicked
to let the text box of ‘PATH’ be shown.
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Figure 1.27: Registration of ‘PLATON’ to
‘OLEX2’.

Figure 1.28: The icon of ‘PLATON’ on
‘OLEX2’.

Here, ‘C:\PLATON’ should be typed after
‘C:\Shelx\shelx64’ by separating them with a
semicolon (;) without space. After closing the
OLEX2, it can be opened again such that the
icon of the PLATON is found as shown in Fig.
1.28 and it can be used.

1.6 Registration of the param-
eter file to the ‘OLEX2’

‘[2] Rigaku XtaLAB P200 007.cif’ in
the folder of ‘[1] Program Files\Olex2-

Figure 1.29: The parameter file.

Figure 1.30: Registration of the parameter file.

1.3\etc\site’ in Fig. 1.29 is the parameter file
of the apparatus. This file should be placed
in the same folder as ‘[1]’. It is available from
the same folder in the computer placed near the
entrance of the room #333 of the 9th building
of the school of engineering.
On the window of the OLEX2, ‘Work [1]’ in

Fig. 1.30 and then ‘[2] ⇓’ on the right of ‘Re-
port’ can be clicked to let the options of ‘Re-
port’ be shown. Here, ‘Diffraction [3]’ and then
‘Definition File [5]’ should be clicked to open
the file explorer as shown in Fig. 1.29. In Fig.
1.29, ‘[2] Rigaku XtaLAB P200 007.cif’ should
be clicked to load it. In Fig. 1.30, ‘XtaLAB
AFC10 (RCD): quarter-chi single’ can be se-
lected from the pull-down menu of ‘Diffractome-
ter [4]’.
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Example of structure determination
with the OLEX2 (Sucrose)

Figure 2.1: Startup of OLEX2 and opening files

2.1 Startup of the OLEX2 and
opening the project

By double-clicking ‘[1]’ icon in 2.1 (a),
CrysAlisPro can be started as shown in Fig. 2.1
(b). Fig. 2.1 (c) where the file explorer is dis-
played, can be opened by clicking ‘[2] Open’ in
Fig. 2.1 (b). Here, the folder of ‘[3]’ in which
‘[4] *.hkl’ and ‘[5] *.ins’ exist, should be opened
by clicking ‘[6] Open(O)’ with ‘[5] *.ins’ clicked
to select it. With this procedure, the files can
be loaded.

2.2 Determination of the ini-
tial phases with the direct
method

In Fig. 2.2, options to determine the initial
phases with the direct method have been set.

Figure 2.2: Setting of options for Solve

‘exp 36 [1]’ is the name of the project. ‘[2] P1’
is the default space group that has the lowest
symmetry that is the triclinic system without
symmetric center. ‘C24H28O22 [3]’ is the for-
mula of molecule in a single unit cell, where the
number of hydrogen is wrong. ‘[4]’ are lattice
constants that are almost correct.

After clicking ‘Work [5]’, options ‘[7]-[12]’ for
‘Solve’ can be opened by clicking ‘⇓ [6]’ on
the right of ‘Solve’. The most recommended
program ‘ShelXT [7]’ for phase determination
has been selected from the pull-down menu.
‘exp 36.hkl [8]’ is the file that has the X-ray
diffraction intensities. ‘C24H28O22 [9]’ is the
molecular formula that is the same as ‘[3]’.
Since there is no symmetric element in the case
of ‘[2] P1’, the number of molecule in a sym-
metric element Z ′ is the same as the number
of molecule in a unit cell Z. By clicking ‘Olex2
[11]’, ‘P21/m’ and ‘P21’ are added as candidates

7
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Figure 2.3: Change of the molecular formula

of the space group to the pull-down menu of
‘Space Group [12]’.

With regard to the space groups, refer to Ap-
pendix B [p.34], please.

In Fig. 2.3 (a), the molecular formula is
‘C24H28O22 [1]’. In Fig. 2.3 (b), however, the
molecular formula and Z ′ have been changed to
be ‘C12H14O11 [4]’ and ’Z ′ = 1’, respectively,
by typing such that ‘Z = 2’. Here, in Fig. 2.3
(b), ‘Solve [3]’ can be clicked for obtaining the
initial phases to display the molecular model as
shown in Fig. 2.4 (b). When a too large molec-
ular model is displayed, click ‘[1]’ on the upper
right of Fig. 2.5 (a), please to display the model
with a proper size.

The molecular structure in Fig. 2.4 (b) has
been obtained by determining the initial phases
with ‘[1] ShelXT’ in Fig. 2.4 (a). The number
of hydrogen in ‘C12 H14 O11 [2]’ is not correct,
yet.

2.3 Concerning the direct
method and ‘SHELX’

There is a difficulty in the crystal structure
analysis that the phase angles of the crys-
tal structure factor cannot be directly mea-
sured while their absolute values can be mea-
sured. This difficulty is called the phase
problem. The direct method was devel-
oped by Hauptman (Herbert Aaron Hauptman;
1917/2/14-2011/10/23) and Karle (Jerome
Karle; 1918/6/18-2013/6/6) from 1950’s. The

Figure 2.4: Molecular structure with the initial
phases determined.

direct method is a purely mathematical method
to determine the phases of the crystal structure
factors based on the evident fact the electron
density in the unit cell is a positive real func-
tion. It was rapidly wide-spread after Karle’s
wife (Isabella Karle; 1921/12/2-2017/10/3) de-
veloped a computer program to solve the phase
problem on the computer.

Hauptman and Karle were awarded the Nobel
prize for chemistry in 1985 for this work.

SHELX is a series of programs to determine
the initial phases with the direct method and re-
fine the molecular structure that has been devel-
oped by Sheldrick of the University of Göttingen
(George Michael Sheldrick; 1942/11/17-) from
1976. A feature article by Sheldrick titled ‘A
short history of SHELX’ was published in Acta
Cryst. A64 (2008) 112-122. Due to the large
number of citations of this article, IF (Impact
Factor) of Acta Cryst. A64 during 2009-2011
reached around 50, which gave a shock to the
scientific community. This reveals the excel-
lence of SHELX and also the important role
of crystallography in the current chemistry and
science.

Sheldrick was awarded the Ewald prize for
this work in 2011.
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Figure 2.5: Molecular structure with initial
phases determined

Figure 2.6: Result after clicking ‘Refine’ twice

2.4 Refinement of the struc-
ture by least-square fitting

Fig. 2.5 (b) shows the initial setting of the re-
finement of structure when starting it. Op-
tions ‘[4]-[7]’ when clicking ‘Refine [2]’ have been
opened by clicking ‘⇓ [3]’ on the right of ‘Refine
[2]’. ‘ShelXL [4]’ has been set (recommended)
as the refinement program. Number of fitting
done when clicking ‘Refine [2]’ has been set to
be 7 in ‘[5]’. Number of peaks of electron den-
sity that are not assigned to atoms (Q peaks),
has been set to be ‘22 [6]’ (number of hydrogen).
From the pull-down menu of ‘[7]’, ‘ACTA’ has
been selected (recommended).

The refinement should be done, first with
isotropic temperature factors without hydro-
gens, secondly with anisotropic temperature
factors without hydrogens, and finally with
anisotropic temperature factors with hydrogens.

2.4.1 Refinement with isotropic tem-
perature factors

Fig. 2.6 shows the result after clicking ‘Refine
[2]’ twice with the settings of Fig. 2.5 (b). The
R-factor has been estimated to be ‘[1] 5.70%’.
‘Shift [2]’ is 0.000 and green. However, ‘GooF

Figure 2.7: Result after further twice refinement
with the weight optimized

Figure 2.8: Electron density peaks not assigned
to any atom (Q peak) and their intensity

[3]’ (Goodness of fit) is 1.680 and red. These
values estimate the soundness of least-square
fitting. The ideal values of ‘Shift [2]’ and ‘GooF
[3]’ are zero (0) and unity (1), respectively.

Fig. 2.7 (a) shows the result of refinement
by typing [Ctrl]+[R] or clicking ‘Refine [2]’ in
Fig. 2.5 (b) with ‘Weight [4]’ checked in Fig.
2.7 (b). The R-factor has decreased slightly to
‘[1] 5.51%’. Both ‘Shift [2]’ and ‘GooF [3]’ are
green which shows that the structure has been
refined soundly.
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Figure 2.9: Refinement result with an oxygen
atom deleted.

2.4.2 Displaying peaks of electron
density that have not been as-
signed to atoms (Q peaks)

In Fig. 2.8 (b) [p.9], peaks of electron den-
sity that have not been assigned to any atom
(Q peaks) have shown as brown spheres. In
Fig. 2.8 (a) [p.9], the pull-down menu of ‘La-
bels [2]’ bellow ‘Toolbox Work [1]’ has been
opened. ‘Q Peak Intensities [4]’ in Fig. 2.8 (a)
[p.9] can be clicked to let the Q peak intensi-
ties be shown with green characters. The unit
is [electrons/Å3]. ‘Q [14]’ in Fig. 2.10 (c) can
be clicked to let the Q peaks be displayed, be
displayed with bonds or not be displayed (as
shown in Fig. 2.11).

After typing [Delete] key to delete the oxygen
at ‘[5]’ on the upper right of Fig. 2.8 (b) [p.9],
the structure can be reined by clicking ‘Refine
[2]’ in Fig. 2.9 (a) or typing [Ctrl]+[R] to display
a brown sphere (Q peak) at ‘[5]’ on the upper
right of Fig. 2.9 (b). The Q peak intensity ‘7.8’
[electrons/Å3] is also displayed with green char-
acters near here. The peak intensities of the Q
peaks in Fig. 2.8 (b) [p.9] are 0.5 ∼ 0.7. All
of these correspond to hydrogens. After refin-
ing the structure with an atom deleted, what it
was can be expected from the Q peak intensity.

Figure 2.10: Result after further twice refine-
ment with anisotropic temperature factors

The Q peak can be returned to be oxygen by
clicking it after clicking ‘O’ of ‘C H O ... [7]’ in
Fig. 2.10 (c) or by clicking ‘O’ of ‘C H O ... [7]’
after clicking the Q peak.

2.4.3 Refinement with anisotropic
temperature factors

The blue elliptical mark of ‘[9]’ in Fig. 2.10
(c) can be clicked to refine the structure with
anisotropic temperature factors. Fig. 2.12
should be displayed by right-clicking the back-
ground of the molecular model to click ‘Ellipses
& sticks’ in it. By clicking‘Refine [5]’ in Fig.
2.10 (b) or typing [Ctrl]+[R], the molecular
model can be displayed as shown in Fig. 2.13.

In Fig. 2.10 (a), the R-factor has further de-
creased to ‘[1] 5.02%’ and both ‘Shift [2]’ and
‘GooF [3]’ are green, which means that the
structure has soundly been refined. The Flack
parameter is approximately 0.0 when the chiral-
ity is right but approximately 1.0 when the chi-
rality is wrong. ‘Flack [4] -.03(7)’ on the right
lower of Fig. 2.10 (b) means that it has been
estimated to be −0.03± 0.07 and then the chi-
rality is right. However, ‘Weight .112(.114) |
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Figure 2.11: Switching the display mode of Q
peaks

Figure 2.12: Setting of the ‘Thermal ellipsoid’
mode.

.662(.644) [6]’ is displayed with yellow charac-
ters. Then, it should be further optimized such
that it is displayed with green characters.

2.4.4 Refinement with hydrogens as-
signed

2.4.4.1 Automatical assignment of hydro-
gens

Fig. 2.14 shows the molecular model refined
with hydrogens automatically assigned by click-

Figure 2.13: The molecular structure displayed
with the ‘Thermal ellipsoid’ mode.

Figure 2.14: Molecular model with hydrogens
automatically assigned.

ing ‘[8] Add H’ in Fig. 2.10 (c). When checked
between ‘[8]’ and ‘Add H’ in Fig. 2.10 (c),
the molecular structure is automatically refined
only by clicking ‘[8] Add H’. This is also applied
when ‘[9]’ or ‘[10]’ on the right of ‘[8] Add H’ is
clicked. ‘H× [13]’ in Fig. 2.10 (c) can be clicked
to cancel the all assignments of hydrogens.

2.4.4.2 Assignment by replacing Q peaks
with hydrogens

One molecule of sucrose has 22 hydrogen atoms.
By setting ‘[9]’ in Fig. 2.16 (d) [p.12] such that
22 Q peaks are displayed after the refinement,
the molecular structure is refined as shown in
Fig. 2.15 (a) [p.12]. ‘Q to H [12]’ in Fig. 2.16
(e) [p.12] can be clicked to replace all Q peaks
with hydrogens as shown in Fig. 2.15 (b) [p.12].

If ‘Weight · · · [10]’ in Fig. 2.16 (d) [p.12] is



12CHAPTER 2. EXAMPLE OF STRUCTURE DETERMINATIONWITH THEOLEX2 (SUCROSE)

Figure 2.15: Q peaks have been replaced with
hydrogens.

displayed with orange or red characters, the
structure should be refined with ‘Weight [10]’
checked such that it is displayed with green
characters as shown in Fig. 2.6 (d). The re-
finement can be repeated to show Fig. 2.15 (c).
While hydroxy groups are considered to exist
at positions of ‘[1]’ and ‘[2]’, there are two and
no hydrogens at ‘[1]’ and ‘[2]’. After deleting
two hydrogens at ‘[1]’ by typing [Delete] key,
the molecular structure can be refined as shown
in Fig. 2.16 (a).

After clicking Q peaks of ‘[1]’ and ‘[2]’ to se-
lect them, they can be changed to hydrogens by
clicking ‘H’ of ‘C H O ... [11]’ in Fig. 2.16 (e).
The structure can be refined as shown in Fig.

Figure 2.16: The refined structure with hydro-
gens of hydroxy groups assigned.

2.16 (b). In Fig. 2.16 (c), the R-factor has de-
creased to ‘[7] 2.53%’. Here, ‘[5]’ can be clicked
to such as to display the correct molecular for-
mula as ‘C12H22O11[6]’. Fig. 2.16 (b) shows the
final molecular structure of sucrose since all in-
tensities of Q peaks are extremely small values
around 0.2 [electrons/Å3].
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Figure 2.17: The window displayed just after clicking ‘[8] ⇓’ in Fig. 2.16 (d).

Figure 2.18: Setting window of report.

2.4.4.3 Manual assignment of hydrogens

Hydrogens can also be manually assigned. Refer
to the description in §3.8 [p.25], please.

2.5 Creation of the report

‘[8] ⇓’ on the right of ‘Report’ in Fig. 2.16 (d)
can be clicked to show the window of Fig. 2.17.
‘CuKa [1]’, ‘0.8636 [2]’ and ‘1.0000 [3]’ displayed
with green characters, can be clicked to display
Fig. 2.18. ‘Make Report [1]’ on the upper right
of Fig. 2.18 can be clicked to create the report of
html, later. The items in the red frames of ‘[2]’
and ‘[4]’ in Fig. 2.18 should be set as this. In the
red frame of ‘Absolute structure determination

Figure 2.19: Setting window of ‘Report’

Figure 2.20: Setting window of ‘Report’

[5]’, the Flack parameter has been estimated to
be −0.04(±0.07), which means that the chiral-
ity of the molecular structure is right.

‘Collection [1]’-‘Source Files [9]’ can be
clicked to set parameters of them, which is de-
scribed in the following subsections.

2.5.1 Settings of ‘Collection’

Fig. 2.20 has been displayed by clicking ‘Collec-
tion [1]’ on the upper left of this figure. The text
box of ‘Submitter’ in Fig. 2.20 can be clicked to
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Figure 2.21: Choice of the first author’s affilia-
tion

Figure 2.22: Typing the first author’s name and
address

Figure 2.23: The first author’s name

display Fig. 2.19 [p.13].

After typing the first author’s affiliation in
Fig. 2.19 (b) [p.13], ‘Add as new [1]’ can be
clicked to type his (her) name and address in
Fig. 2.19 (d) [p.13] as shown in ‘[1]’ of Fig. 2.22.
His (her) name as in Fig. 2.23 is displayed in the
field of (c) in Fig. 2.19 [p.13]. When the number
of the author is one, ‘[2] Add as new’ and then
‘[3] OK’ should be clicked in Fig. 2.22 to finish.

To add the second author whose affiliation is
the same as the first author, at first, the affil-
iation of the first author should be clicked as
shown in Fig. 2.21 (b) in the field of (a) in Fig.
2.19 [p.13]. Here, the second author’s name and
address should be typed as shown in Fig. 2.24
‘[1]’. Then, ‘[2] Add as new’ should be clicked
such that Fig. 2.25 is displayed in (c) of Fig.

Figure 2.24: Typing the second author’s name
and address

Figure 2.25: The first and second authors’ name

Figure 2.26: Addition of the third author’s af-
filiation

2.19 [p.13]. When the number of author is two,
‘[3] OK’ in Fig. 2.24 should be clicked to finish.

To add the third author whose affiliation is
different, at first, his (her) affiliation should be
typed in (b) of Fig. 2.19 [p.13] as shown in Fig.
2.26 ‘[1]’. Then, ‘[2] Add as new’ should be
clicked such as to display it in (a) of Fig. 2.19 (a)
[p.13]. It can be clicked to display Fig. 2.27 (b)
such that the third author’s name and address
can be typed as shown in Fig. 2.28 ‘[1]’. Here,
‘[2] Add as new’ can be clicked such as to display
Fig. 2.29 in (c) of Fig. 2.19 [p.13]. Then, ‘[3]
OK’ in Fig. 2.28 can be clicked to finish the
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Figure 2.27: Selection of the affiliation of the
third author.

Figure 2.28: Typing the third author’s name
and address.

Figure 2.29: The third author’s name

creation of the authors list.

‘[1] Submitter’ in Fig. 2.30 (a) can be clicked
to open the authors list as shown in Fig. 2.19
[p.13]. In (a) of Fig. 2.19 [p.13], at first, the
affiliation should be clicked as shown in Fig. 2.30
(b). Then, the submitting author can be clicked
as shown in Fig. 2.30 (c).

After clicking ‘Operator [2]’, the operator can
also be set with a similar procedure as above.

From the pull-down menus of ‘Submitted [3]’,
‘Collected [4]’ and ‘Completed [5]’ on the bot-
tom of Fig. 2.30 (f), the dates can be selected.
Now, all items of ‘Collection [1]’ on the upper
left of Fig. 2.20 [p.13] have been set.

Figure 2.30: Selections of ‘Submitter’ and ‘Op-
erator’.

Figure 2.31: Selection or typing of crystal infor-
mation.

2.5.2 Settings of ‘Crystal’

Fig. 2.31 has been opened by clicking ‘Crystal
[2]’ on the upper left of it. Here information
concerning the crystal can be selected or typed.
If inputted on the CrysAlisPro, it has already
been set. Even if not, at least, ‘Colour [1]’ and
‘Size & Shape [2]’ shouled be selected or typed.

2.5.3 Settings of ‘Crystal Image’

Fig. 2.32 [p.16] has been opened by clicking
‘Crystal Image [3]’ on the upper left of it. Here,
‘>’ can be clicked to reproduce the optical im-
ages of the crystal continuously.
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Figure 2.32: Selection or typing of crystal infor-
mation.

Figure 2.33: Setting of the parameter file

Figure 2.34: Information about the absorption
correction.

2.5.4 Settings of ‘Diffraction’

Fig. 2.33 has been displayed by clicking ‘Diffrac-
tion [4]’ on the upper left of it. Here, ‘Definition
file [2]’ can be clicked to display the file explorer
as shown in Fig. 2.33 (b). In Fig. 2.33 (b), ‘[5]
Rigaku XtaLAB P200 007.cif’ in the folder of
‘[4] Program Files\Olex2-1.3\etc\site’, should
be clicked to load it as shown in Fig. 2.33 (a)

Figure 2.35: List of the authors and title of the
journal

Figure 2.36: Cover letter to the editor.

Figure 2.37: Articles that should be cited.

Figure 2.38: Information concerning the sub-
mitted article

‘[3]’. Then, the pull-down menu of ‘[1]’ can be
found as shown in Fig. 2.33 (a).
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Figure 2.39: Information concerning the the
source file

Figure 2.40: Creation of the report

Figure 2.41: Conflicting information

2.5.5 Settings of ‘Absorption Correc-
tion’

Fig. 2.34 has been opened by clicking ‘Absorp-
tion Correction [5]’ on the upper left of it. In the
CrysAlisPro, empirical correction is necessarily
applied to taking into account the absorption
effect based on the expected crystal shape from
the comparison of X-ray intensities of equivalent
reflections. Information concerning the absorp-
tion correction is described in Fig. 2.34. If the
absorption correction has been performed based
on the measured crystal shape, information con-
cerning this method is also described.

2.5.6 Settings of ‘Publication’

Fig. 2.35 has been displayed by clicking ‘Publi-
cation [6]’ on the upper left of it. In ‘[2]’ of Fig.
2.35, three author’s names are listed. They have

been inputted in Figs. 2.19 [p.13]-2.29 [p.15].
The ‘Contact Author [1]’ can be selected from
the pull-down menu in Fig. 2.35. The order
of the authors can be changed by clicking the
arrow of ‘[2]’ in Fig. 2.35. ‘Add Author [3]’ can
be clicked to add another author into the list.
‘Requested Journal [4]’ can be selected from the
pull-down menu. ‘Journal Style [5]’ can also
be selected from the pull-down menu. ‘Contact
Letter [6]’ in Fig. 2.35 can be clicked to show
Fig. 2.36 in which a contact letter to the editor
can be typed. ‘OK’ on the lower left of it can
be clicked to finish.

2.5.7 Settings of ‘Citations’

Fig. 2.37 has been opened by clicking ‘Citations
[7]’ on the upper left of it. These three articles
should necessarily be cited when the OLEX2

and the ShelX have been used.
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2.5.8 Setting of ‘Reference’

Fig. 2.38 [p.16] has been displayed by clicking
‘Reference [8]’ on the upper left of it. In ‘Au-
thors [1]’, the authors that have been set in Fig.
2.35 [p.16] are listed. ‘Journal [2]’ can be se-
lected from the pull-down menu.

2.5.9 Settings of ‘Source Files’

Fig. 2.39 [p.17] has been opened by clicking
‘Source Files [9]’ on the upper left of it. Here,
information concerning the source files is de-
scribed.

2.5.10 Creation of the final report

‘Make Report [1]’ on the right of Fig. 2.40 [p.17]
can be clicked to let Fig. 2.41 [p.17] be dis-
played. ‘Use’ on the right of Fig. 2.41 [p.17] can
be clicked to open the browser on which Fig.
2.42 is opened. In this file, the space group,
the lattice parameters, the crystal size and all
other information concerning the crystal are de-
scribed.

Figure 2.42: Final information concerning the
crystal
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To be continued



Chapter 3

Example of structure detemination
with the OLEX2 (α-cyclodextrin)

Figure 3.1: Loading the file

3.1 Opening the project

‘[1] Open’ on the lower right of Fig. 3.1
(a) can be clicked to let Fig. 3.1 (b) be
shown. In the folder of project ‘[2] · · ·
exp 663\struct\olex2 exp 663’, in Fig. 3.1 (b),
‘[3] exp 663.hkl’ and ‘[4] exp 663.ins’ are found.
After selecting ‘[4] exp 663.ins’, ‘[5] Open(O)’
on the lower right should be clicked. Fig. 3.2
shows the molecular structure automatically de-
termined by ‘AutoChem’ in the OLEX2. By
typing [Ctrl]+[T], this window can be changed
such as to display only the text as shown in Fig.
3.3 (a). By typing [Ctrl]+[T] again, Fig. 3.3
(a) can be changed such as to display only the
molecular model as shown in Fig. 3.3 (b). By

Figure 3.2: Molecular structure automatically
determined by the AutoChem.

typing [Ctrl]+[T] once more, both the molecular
model and the text can be displayed as shown
in Fig. 3.2, which is recommended.

3.2 Determination of the ini-
tial phases

In Fig. 3.4 (b), ‘Work [1]’ and then ‘⇓ [2]’ on
the right of ‘Solve [3]’ can be clicked to display
‘Solve’ options. ‘ShelXT [4]’ is recommended
to select from the pull-down menu since this
is recognized to be the most excellent as the
phase determination program. ‘Solve [3]’ can be
clicked to start the initial phase determination.
It is time consuming due to the large size of the

20
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Figure 3.3: [Ctrl]+[T] can be typed to display
these windows.

Figure 3.4: Settings for determination of the
initial phases.

molecule to determine the initial phases. Then,
‘Solving [5]’ as shown in Fig. 3.4 (c) is displayed
for one minute or so on the upper right corner
of the molecular model display region.

At first, the initial structure model of the

Figure 3.5: Initial structure obtained by the
phase determination

Figure 3.6: solvent molecule moved by symmet-
rical operation

molecule is displayed as shown in Fig. 3.5. By
clicking ‘[6]’ on the right of Fig. 3.4 (a), ‘Solvent
molecule [S]’ on the left of Fig. 3.5 can be moved
to inside the ring as shown in Fig. 3.6. While
only one molecule of the solvent is displayed fol-
lowing the rule that just one symmetric unit is
displayed, the solvent molecules exist both in-
side and outside of the ring.
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Figure 3.7: Starting the optimization of the
molecular structure

Figure 3.8: Checking the existence of symmetric
center

3.3 The optimization of the
molecular structure

Fig. 3.7 shows the initial window to start the
optimization of the molecular structure.

At first, ‘⇓ [1]’ can be clicked to set the op-
tions for optimization.

After selecting ‘ShelXL [2]’ which is recom-
mended, the optimization can be repeated by
clicking ‘Refine [3]’ or typing [Ctrl]+[R]. Here,
tools in ‘Toolbox Work [4]’ can be used.

As described in chapter 2 [p.7], the optimiza-
tion of the molecular structure should be done
in the order of optimization with isotropic tem-
perature factors without hydrogen, that with
anisotropic temperature factors without hydro-
gen and that with anisotropic temperature fac-
tors and hydrogen atoms.

Figure 3.9: Checking the existence of symmetric
center

Figure 3.10: Anomalous intensity of Maximum
Peak

In the following sections, items that have not
been described in chapter 2 are described.

3.4 Checking the existence of
symmetric center

After finishing the optimization of the molecu-
lar structure, ‘Info [1]’ on the upper right of Fig.
3.8 should be clicked. After opening ‘Reflection
Statistics [2]’ in Fig. 3.8, ‘Cumulative Intensity
[4]’ should be selected from the pull-down menu
of ‘[3]’ to display Fig. 3.9. Here, three curves
‘[C] Centric’, ‘[A] Acentric’ and ‘[T] Twinned
Acentric’ correspond to crystals with symmet-
ric center, those without symmetric center and
twinned crystals without symmetric center, re-
spectively. It can be found that the crystal
whose structure to be solved does not have sym-
metric center since square marks are plotted in
the vicinity of ‘[A] Acentric’. This is reasonable
since the space group P212121 (orthorhombic
#19) displayed on the upper right of Fig. 3.4
(a) [p.21] does not have symmetric center and
α-cyclodextrin has a chiral molecular structure.
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Figure 3.11: Anomalous intensity of Maximum
Peak

3.5 Consideration on the in-
tensities of Q peaks

‘MaxPeaks 2.2 [1]’ in Fig. 3.10 is a warning
that the maximum intensity of Q peak 2.2
[electrons/Å3] which is a peak of electron den-
sity not assigned to any atom, is too large. In
Fig. 3.11, ‘Info [1]’ and then ‘Electron Density
Peaks [2]’ have been clicked to open. The inten-
sities of Q peaks are displayed on a bar chart.
‘Q1 2.240 [3]’ on the left of the yellow bar is also
a warning that the maximum intensity (2.240
[electrons/Å3]) of Q peak is too large.

In Fig. 3.12 showing the molecular model,
number of Q peaks displayed can be decreased
by scrolling the mouse wheal to the near direc-
tion as shown in Figs. 3.12 (a), 3.12 (b) and
3.12 (c). In Fig. 3.12 (c), only one Q peak is
found which is nothing but the largest electron
density peak as shown in Figs. 3.10 and 3.11.

The molecule of α-cyclodextrin is a molecule
of cyclic oligosaccharide that consists of glu-
coses linked with glycosidic bonds. Therefore,
Q peaks labelled with C, C, Q and C in Fig.
3.12 (c) are actually disordered oxygen atoms.
When attention is focused on Q and C on the
rightmost of Fig. 3.12 (c), oxygen atoms exist
at either of these sites with an occupancy ratio
of approximately 1 : 1. The situation is similar
to the above case also for the first and second
leftmost C. In the following section, the pro-
cedure to separate these disordered oxygens is
described.

Figure 3.12: Changing the number of displayed
Q peaks.

3.6 Separation of disordered
atoms

After three carbons indicated with red arrows in
Fig. 3.12 (c) are deleted or replaced to oxygens,
the molecular structure can be refined by typing
[Ctrl]+[R] or clicking ‘Refine [3]’ in Fig. 3.7 as
shown in Fig. 3.13 [p.24].

The procedure to separate a pair of Q peak
and oxygen on the right of Fig. 3.13 [p.24] into
oxygens disordered at two cites, is described
referring Figs. 3.14-3.16 [p.24] as follows. At
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Figure 3.13: Refined with oxygen replaced from
carbon.

Figure 3.14: The oxygen is dragged to Q peak
with [Shift] key pressed.

first, the oxygen atom should be clicked to let
it be displayed as a green sphere as shown in
Fig. 3.14 (a). Next, in Fig. 3.15, ‘Tools [1]’,
‘Disorder [2]’ and then ‘[3] mSprit’ should be
clicked such that an orange band is displayed
on the bottom of Fig. 3.15. Further, the or-
ange sphere as shown in Fig. 3.14 (b) should be
click&dragged to the position of Q peak with
[Shift] key pressed as shown in Fig. 3.14 (c).
The positions of the orange sphere and the Q
peak should three-dimensionally coincide with
each other. The molecular model should be ro-
tated by click&dragging it without [Shift] key
pressed such that the positions of the orange
sphere and the Q peak can be adjusted also in

Figure 3.15: Starting to separate the disordered
oxygens

Figure 3.16: The disordered oxygen separated
to two sites

the depth direction of Fig. Fig. 3.14 (c). [Esc]
key can be clicked to escape from the peak sep-
aration mode.

The molecular structure with the disordered
oxygen separated can be refined by typing
[Ctrl]+[R] or clicking ‘Refine [3]’ in Fig. 3.7
[p.22] as shown in Fig. 3.16. By placing the
mouse cursor on the oxygens at ‘[1]’ and ‘[2]’, la-
bels can be displayed for several seconds around
there. The labels show the occupancies of oxy-
gen at cites [1] and [2] are 0.67862 and 0.32138,
respectively.

The similar procedure can be applied to sep-
arating the pair of Q peak and oxygen at upper
central part of Fig. 3.13
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Figure 3.17: Refined result with isotropic tem-
perature factors

Figure 3.18: Refined result with anisotropic
temperature factors

3.7 Refinement with isotropic
and anisotropic tempera-
ture factor

Similarly to the case of sucrose, after refining
the structure under the assumption of isotropic
temperature factors such that the R-factor
comes to be ‘[1] 9.51%’ as shown in Fig. 3.17,
the temperature factor should be changed to
anisotropic such that the R-factor comes to be

Figure 3.19: Manual addition of hydrogens to
carbons

‘[1] 7.48%’ as shown in Fig. 3.18 (a).

The temperature factor can be changed from
isotropic to anisotropic by clicking ‘[9]’ and vice
versa by clicking ‘[10]’ on the lower left of Fig.
2.10 (c) [p.10].

3.8 Refinement with hydrogen
atoms added

In the case of sucrose, the automatic assignment
of hydrogen as in §2.4.4.1 [p.11] and the assign-
ment by changing Q peaks to hydrogens as in
§2.4.4.2 [p.11] have been described. However,
how to manually assign hydrogen atoms is de-
scribed in this section.

‘Tools’ in Fig. 3.19 (a) and then ‘Hydrogen
Atoms’ in Fig. 3.19 (b) can be clicked such as to
display icons indicated by [1]-[7] on the bottom.
These can be clicked to display the orange bands
of ‘[1] Carbon of benzene ring’, ‘[2] Carbon of
ethylene group’, ‘[3] Carbon of methine group’,
‘[4] Carbon of methylene group’, ‘[5] Carbon of
methyl group’, ‘[6] Oxygen of hydroxy ion’ and
‘[7] Oxygen of hydroxy group’ as shown in Fig.
3.20 [p.26] to assign them. [Esc] key can be
clicked to escape from these modes.

In the next subsection, how to assign carbon
of methine group, carbon of methylene group
and oxygen of hydroxy group, are described.

3.8.1 Assignment of methine groups

Peaks of electron density due to hydrogens
of methine groups have relatively large values
since the parent atoms are supported by three
atomic bonds like a tripod.
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Figure 3.20: [1]-[7] correspond to Fig. 3.19 [1]-
[7].

Figure 3.21: Methine groups have been as-
signed.

‘[3]’ in Fig. 3.19 (b) [p.25] can be clicked to
let the orange band of Fig. 3.20 [3] be displayed.
Here, carbons of methine groups can be clicked
to assign them such that green labels of ‘13’ are
displayed as shown in Fig. 3.21.

After clicking carbons of all methine groups
to assign them, [Ctrl]+[R] can be typed about
ten times to refine the structure to display Fig.
3.22. As shown on the upper right of Fig. 3.22
(a), the R-factor has decreased to 6.54%. On
the lower right of Fig. 3.22 (b), Q peaks due to
hydrogens of methylene groups are found.

Figure 3.22: Refined result after methine groups
assigned

Figure 3.23: Methylene groups have been as-
signed.

3.8.2 Assignment of methylene groups

Methylene group has two hydrogens and two
atomic bonds linked to non-hydrogen atoms.

In Fig. 3.23, the orange band of Fig. 3.20
[4] has been displayed by clicking Fig. 3.19 (b)
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Figure 3.24: Hydrogens of disordered methylene
group have been assigned.

[p.25] [4]. Here, carbons of methylene group
have been clicked to assign them such that green
labels ‘23’ are displayed.

In Fig. 3.24, hydrogen atoms have been added
to the disordered oxygens of methylene groups
by clicking the parent atoms. Therefore, the
carbons of the methylene groups have four hy-
drogens due to the disordered oxygens. By plac-
ing the mouse cursor on these hydrogens, labels
can be shown as shown in Fig. 3.24 for sev-
eral seconds. The same values of occupancy as
the disordered oxygen have also been applied to
these hydrogens.

After adding hydrogens to all methylene
groups, the molecular structure can be refined
about ten times by typing [Ctrl]+[R] or clicking
‘Refine [3]’ in Fig. 3.26 to show Fig. 3.25. As
displayed on the upper right of Fig. 3.25 (a),
the R-factor decreased to 6.08%. In Fig. 3.25
(b), hydrogens of hydroxy group and H2O are
found as Q peaks.

3.8.3 Assignment of hydroxy groups and
H2O

Hydrogens can be added to hydroxy groups
(and H2O) by replacing Q peaks with hydro-
gens more correctly than by clicking the icon
of ‘[7]’ in Fig. 3.19 (b) [p.25] to assign hydroxy
groups since hydroxy groups and H2O have high
flexibility of rotation.

In Fig. 3.26, the refinement options have been

Figure 3.25: Refined with hydrogens of methine
groups added

Figure 3.26: Refinement with hydrogens of hy-
droxy groups and H2O added

displayed by clicking ‘Work [2]’ and then ‘⇓ [4]’
on the right of ‘Refine [3]’. The Q peaks that
are considered to be hydrogens can be clicked to
assign them to hydrogen after clicking ‘Toolbox
Work [5]’ and then ‘[6] H’ in Fig. 3.26.

After assigning all hydrogens to hydroxy
groups or H2O, the molecular structure can be
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Figure 3.27: Refined with hydrogens of hydroxy
groups and H2O added

Figure 3.28: Omitting bad reflections

refined about ten times by typing [Ctrl]+[R] or
clicking ‘Refine [3]’ in Fig. 3.26 [p.27] to show
Fig. 3.27. The R-factor has decreased to ‘[1]
5.71%’ as shown on the upper right of Fig. 3.26
[p.27]. This is the final molecular structure of
α-cyclodextrin since further unfounded refine-
ment should not be done.

Figure 3.29: Result of refinement

Figure 3.30: Result of refinement with the ex-
tinction effect taken into account

3.9 Omitting bad reflections

By clicking ‘Info [1]’ in Fig. 3.28 and then ‘Bad
Reflections [2]’, reflection indices whose discrep-
ancy in structure factor by calculation and ob-
servation can be summarized. In Figs. 3.28 (a),
it is shown that reflection indices whose values
of [Error/esd] is larger than ‘10 [4]’ is ‘[5] 0 0
2 12.60’. ‘[3] OMIT’ can be clicked to change
‘omit’ on the rightmost of ‘[5] 0 0 2 12.60’ in
Fig. 3.28 (a) to ‘Omitted’ on the rightmost of
‘[6] 0 0 2 12.60’ in Fig. 3.28 (b).

Then. the structure has been refined by typ-
ing [Ctrl]+[R] about ten times to show Fig. 3.29.
In this case, the R-factor ‘[1] 5.71%’ has not
been improved. However, this procedure is rec-
ommended to try since the R-factor can some-
times be improved by omitting bad reflections.

3.10 Consideration of extinc-
tion effect

In Fig. 3.30, ‘Work [2]’ and then ‘⇓ [4]’ on the
right of ‘Refine [3]’ have been clicked to show the
refinement options. ‘[5] EXTI’ can be checked
to do refinement with the extinction effect taken
into account.

The extinction is a dynamical diffraction ef-
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fect that the h k l-reflected X-ray intensities
do not increase linearly due to h k l reflection.
Since the R-factor is sometimes improved by
checking ‘[5] EXTI’, it is recommended to try
to refine the structure with ‘[5] EXTI’ checked.
However, ‘[5] EXTI’ should be unchecked when
the R-factor increases. In the case of Fig. 3.30
the R-factor ‘[1] 5.71%’ has not been improved.

This is the end of refinement of the molecular

structure of α-cyclodextrin

3.11 Creation of the report

The report can be created similarly to the case
of sucrose. Refer to the description in §2.5
[p.13], please.



Appendix A

Reasonability of defining the
reciprocal lattice

For many students working on crystallogra-
phy, the first difficulty is understanding of re-
ciprocal lattice. In spite that the Bragg con-
dition written by (A.1) or (A.2) can easily be
understood, why such strange ideas as recipro-
cal lattice and reciprocal space should we use
? This chapter describes the equivalence of
Bragg’s reflection condition, Laue’s reflection
condition and Ewald construction (Reciprocal
lattice node exists on the Ewald sphere), from
which how reasonably the reciprocal lattice is
defined can be understood.

Every space group of crystal has an extinc-
tion rule owing to its symmetry with which the
crystal structure factor comes to be zero. How-
ever, it is neglected in the following description
for simplicity.

A.1 Bragg’s reflection condi-
tion

Figure A.1 shows Bragg’s reflection condition.
This figure is also found in high school text
book. Bragg’s reflection condition can relatively
easily and intuitively referring to this figure.
When atoms (or molecules) are arranged on a
set of planes as shown in Fig. A.1. Optical path
length of X-rays drawn as a gray line are longer

than that drawn as a black line by |
−→
ab| + |

−→
bc| (=

2d sin θB). When this length is an integral mul-
tiplication of the wavelength, these rays inter-
fere constructively with each other. Therefore,
reflection condition can be described as follows,

2d sin θB = nλ. (A.1)

Figure A.1: Bragg’s reflection condition.

By redefining lattice spacing d′ to be d′ = d/n,
the following equation is also frequently used,

2d′ sin θB = λ. (A.2)

Now, let us consider why the angle of inci-
dence and emergence is identical. Is it evident
since the Bragg plane works as a mirror plane ?
Then, why are the angles of incidence and emer-
gence of a mirror identical ? Sometimes, even
a veteran of crystallography cannot answer to
this question.

A.2 Laue’s reflection condition

Laue’s reflection condition was used to explain
the phenomenon of X-ray diffraction when it
was invented by Laue (Max Theodor Felix von
Laue; 1879/10/9-1960/4/24) in 1912, which is
described referring to Fig. A.2 as follows,

R0B−AR1

=
−−−→
R0R1 · s1 −

−−−→
R0R1 · s0 = n0λ. (A.3)

Here, s0 and s1 are unit vectors in the direction
of propagation of incident and reflected X-rays.

30
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When R0 and R1 are equivalent lattice points,
difference in optical path length between black
and gray paths drawn in Fig. A.2 is given by
(A.3). When this difference in path length is
an integral multiplication of wavelength, X-rays
scattered by lattice points R0 and R1 interfere
constructively with each other.

Incidentally, since R0 and R1 are equivalent
lattice point, there is a restriction as follows,

−−−→
R0R1 = n1a+ n2b+ n3c, (A.4)

where, n1, n2 and n3 are arbitrary integers. a,
b and c are primitive translation vectors. That
is to say the left hand side of (A.3) should be
integral multiplication of wavelength for arbi-
trary integers n1, n2 and n3. Lattice points
R0 and R1 can move freely with a restriction
that these are equivalent points. The value
of left hand side of (A.3) is evidently positive

when
−−−→
R0R1 · s1>

−−−→
R0R1 · s0 and is negative when−−−→

R0R1 ·s1<
−−−→
R0R1 ·s0. Figure A.2 is drawn under

an assumption of the latter case.
However, R0 and R1 can also be taken such

that
−−−→
R0R1 · s1=

−−−→
R0R1 · s0. In the following dis-

cussion in this paragraph, R0 and R1 are fixed

such that
−−−→
R0R1 · s1=

−−−→
R0R1 · s0. When R0, R1

and optical paths drawn as black and gray lines
are all on the drawing, there should be a plane
perpendicular to the drawing that include those
points and optical paths. When X-rays are scat-
tered at any point on this plane under a condi-
tion that the angles of incidence and emergence
are the same, the optical path length is always
the same. This is also the reason for that the
angle of incidence and emergence for a mirror is
always identical.

In Bragg’s reflection condition, under an im-
plicit (the first and second dimensional) restric-
tion that optical path length are always the
same for a defined Bragg plane when the an-
gle of incidence and emergence is identical, the
third dimensional condition is given by (A.1)
or (A.2). Behind the simple condition given by
those equations, the above mentioned first and
second dimensional restrictions are hidden.

Now, for description in the next section, the
following equation is prepared by dividing the
both sides of eq. (A.3) by the wavelength λ,

−−−→
R0R1 ·

(s1
λ

− s0
λ

)
= n0. (A.5)

Figure A.2: Laue’s reflection condition.

By substituting (A.4) into the above equation
and considering that the wave vectors of inci-
dent and reflected X-rays are given by K0=s0/λ
andK1=s1/λ, the following equation can be ob-
tained,

(n1a+ n1b+ n1c) · (K1 −K0) = n0. (A.6)

A.3 Ewald’s reflection condi-
tion (Ewald construction)

A.3.1 Foundation of Ewald construc-
tion

Fig. A.3 [p.32] shows the situation that the ori-
gin O of reciprocal space and a reciprocal lattice
node Hhkl simultaneously exist on the surface of
Ewald sphere. Its center is the common initial
point of wave vectors K0 and K1.

In the description of Ewald construction, at
first, reciprocal fundmental vectors a∗, b∗ and
c∗ are defined as follows:

a∗ =
b× c

a · (b× c)
, (A.7a)

b∗ =
c× a

a · (b× c)
, (A.7b)

c∗ =
a× b

a · (b× c)
. (A.7c)

The denominator of (A.7), a· (b × c) [= b·
(c × a) = c· (a × b)] is the volume of paral-
lelepiped whose edges are a, b and c. From
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Figure A.3: Ewald sphere

the above definitions, the following equations
are evident,

a · a∗ = 1, (A.8a)

b · b∗ = 1, (A.8b)

c · c∗ = 1. (A.8c)

Further, b×c is a vector that is perpendicular
to both b and c and has a length of the area
of parallelogram whose sides are b and c. Here,
vectors b, c and b×c construct a right-handed
system. Since the above is the same for c×a and
a×b, the following relations are also evident,

a · b∗ = a · c∗ = 0, (A.9a)

b · c∗ = b · a∗ = 0, (A.9b)

c · a∗ = c · b∗ = 0. (A.9c)

That is to say, a∗, b∗ and c∗ have been defined
such that (A.8) and (A.9) are satisfied.

A reflection vector giving h k l reflection is
defined in general as follows:

−−−−→
OHhkl = ha∗ + kb∗ + lc∗. (A.10)

Here, O is the origin of reciprocal space. The
Ewald sphere is a sphere whose center is P. The

wave vector of the incident X-rays K0 is
−→
PO.

When a reciprocal lattice node Hhkl exists on
the surface of the Ewald sphere, reflected X-

rays whose wave vector K1 is
−−−−→
OHhkl are excited.

Then, the following equation is satisfied,

K1 −K0 =
−−−−→
OHhkl

= ha∗ + kb∗ + lc∗. (A.11)

Let us calculate the left-hand side of (A.6)
[p.31] by substituting (A.11) into the second
term of the left-hand side of (A.6) [p.31] and
considering (A.8) and (A.9) as follows:

(nxa+ nyb+ nzc) · (K1 −K0)

= (nxa+ nyb+ nzc) · (ha∗ + kb∗ + lc∗)
(A.12)

= nxh+ nyk + nzl. (A.13)

Since nxh + nyk + nzl is evidently an integer,
Laue’s reflection condition described by (A.3)
[p.30], (A.5) [p.31] and (A.6) [p.31], is satisfied
when the reciprocal lattice node Hhkl is on the
surface of Ewald sphere. Therefore, Ewald’s re-
flection condition is equivalent to Laue’s reflec-
tion condition. Furthermore, Ewald’s reflection
condition is also equivalent to Bragg’s reflec-
tion conditions, which is more clarified by the
description in the next section A.3.2

Bragg’s reflection condition can easily be
understood by referring to Fig. A.1 [p.30].
Laue’s reflection condition is more difficult than
Bragg’s reflection condition. However, it can
also be understood by referring to Fig. A.2
[p.31]. The drawing of Fig. A.3 in reciprocal
space was invented by Ewald. This way of
drawing is extremely effective when consider-
ing various difficult problems in crystallography
that cannot be understood by drawing figures as
shown in Fig. A.1 [p.30] and /or Fig. A.2 [p.31]
in real space. It is strongly recommended to
use the Ewald construction by using Fig. A.3
by paying respect to Ewald (Paul Peter Ewald,
1888/1/23∼1985/8/22).

A.3.2 Relation between reciprocal
lattice vector and Bragg reflec-
tion plane

Reciprocal lattice vector is a vector whose di-
rection is perpendicular to the Bragg plane and
length is 1/d′, where d′ is the lattice spacing
of the Bragg plane. These are verified in the
following paragraphs.

By considering n0 = nxh+ nyk + nzl, (A.10)
and (A.12)=(A.13), the following equation is
obtained.

−−−−→
OHhkl · (nxa+ nyb+ nzc) = n0. (A.14)
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Figure A.4: Drawing of Miller and Miller indices

By multiplying 1/|
−−−−→
OHhkl| to the both sides of

the above equation, the following equation is
obtained,

−−−−→
OHhkl

|−−−−→OHhkl|
· (nxa+ nyb+ nzc) =

n0

|−−−−→OHhkl|
.

(A.15)

A plane is described in general as follows:

[Unit normal vector] · [Location vector]

= [Distance from the origin].
(A.16)

Therefore, n0 ∈ { · · · , −2, −1, 0, 1, 2, · · · } in
(A.15) means that location vector nxa+ nyb+
nzc is on Bragg planes piled up with a spacing

of d′(= 1/|
−−−−→
OHhkl|), which reveals that the recip-

rocal lattice vector
−−−−→
OHhkl is the normal vector

of Bragg plane whose length is 1/d′.

A.4 Drawing of Miller and
Miller indices

Fig. A.4 shows the relation between the Miller
indices and the Bragg plane and is found in
almost all text books describing the crystal-
lography. This way of drawing was invented
by Miller (William Hallows Miller; 1801/4/6-
1880/5/20). However, it should be noted that

he was a mineralogist of the 19th century be-
fore X-rays and X-ray diffraction were invented.
Figs. A.1[p.30] and A.4 are found in many text
books. However, it cannot be recommended
that the students and researchers attempt to
understand the X-ray diffraction phenomena
only by referring to Figs. A.1[p.30] and A.4.

Points A, B and C in Fig. A.4 exist on a, b
and c axes, respectively. Distances of them from
the origin O are a/h, b/k and c/l. Miller in-
vented that a, b and c axes can be defined such
that all facets of crystals are drawn as shown in
Fig. A.4 with small integers h, k and l.

When h = 0, distance of A from O is inifinite
and then the plane ABC is parallel to a. This
is the case for k, B and b and for l, C and c.

h, k and l are indices of reciprocal lattice
nodes, which was clarified several decades af-
ter Miller’s invention. ABC is a plane whose
direction is parallel to the Bragg plane and dis-
tance from O is d′. These are confirmed in the
following description.

By referring to Fig. A.4,
−→
AB = −a/h + b/k

and then
−→
AB ·

−−−−→
OHhkl is calculated as follows:

−→
AB ·

−−−−→
OHhkl = (−a/h+ a/k) · (ha∗ + kb∗ + lc∗)

= −1 + 1

= 0. (A.17)

Therefore, line AB is confirmed to be per-

pemdicular to
−−−−→
OHhkl. Similarly, lines BC and

CA are confirmed to be perpendicular to
−−−−→
OHhkl.

Further, from this, the distance of ABC from
the origin O can be obtained from scalar prod-
uct between the unit normal vector of plane

ABC and vector
−→
OA,

−→
OB or

−→
OC as follows:

−→
OA · −−−−→OHhkl/|

−−−−→
OHhkl|

=
a

h
(ha∗ + kb∗ + lc∗)/|−−−−→OHhkl|

= 1/|
−−−−→
OHhkl|

= d′ (A.18)

As described above, the explanation of Fig.
A.4 needs complex descriptions. It cannot be
recommended to understand the phenomena of
X-ray diffraction only referring to the drawing
of Miller as shown in Fig. A.4.



Appendix B

Determination of space group from
extinction rule

Figure B.1: Content of ‘process.out’ (#1).
[Taurine; monoclinic P21/c(#14)].

One of the most important process in the
crystal structure analysis is determination of
space group. CrystalStructure 4.1 determines
the space group automatically as sown in Fig.
B.3.

In this chapter, how the computer determines
the space group, is described. When the com-
puter failed to determine the space group cor-
rectly, it should be determined manually refer-
ring to the description of this chapter.

Figs. B.1, B.2 and B.3 show contents of ‘pro-
cess.out’ displayed by clicking ‘View output file’
button in Fig. 2.12 of Part2a manual. In this
file, information about the extinction rule based

Figure B.2: Content of ‘process.out’ (#2).
[Taurine; monoclinic P21/c(#14)]

on which the space group can be determined,
are summarized.

Information about extinctions of reflections
whose three, two or one indices are not zero,
are summarized on parts [1], [2, 3] and [4], re-
spectively, of Fig. B.1. For example, ‘eeo’ found
on the upper part of [1] in Fig. B.1 means that
indices of hkl are even, even and odd. ‘totl’ and
‘obsd’ are numbers of total and observed reflec-
tions. <I/sig> are mean values of I/σ, where I
is observed intensity of reflected X-rays and σ is
standard deviation of background. Since values
of ‘obsd’ and <I/sig> are sufficiently large,
there is no extinction for three nonzero hkl. On
parts [2] and [3] in Fig. B.1, h0l reflections are

34
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Table B.1: 14 Bravais lattices and ‘Face-centered monoclinic’. Refer to the last paragraph of
§B.2 [p.37], please about why ‘Face-centered monoclinic’ is added.

Figure B.3: Content of ‘process.out’ (#3)
[Taurine; monoclinic P21/c(#14)]. [setting #1]
corresponds to ‘[1] CELL CHOICE 1’ in Fig.
B.5.

recognized to distinguish since value of <I/sig>
is extremely small when l is odd. This is indi-
cated by an ‘∗’ mark. Similarly, in part [4] in
Fig. B.1, 0k0 and 00l reflections are recognized
to distinguish when k is odd and l is odd,
respectively since values of <I/sig> and ‘% of

o/e’ are extremely small. In parts [5] and [6] in

Figure B.4: Reflection condition of
P21/c(#14) described in International Tables
for Crystallography (2006) Vol.A. 0k0 reflec-
tions when k is odd and, h0l and 00l reflections
when l is odd, extinguish.

Fig. B.2, information about reflection in-
dices when indices or summation of them are
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Table B.2: Symmetric elements (planes). Pro-
tein crystals do not have these symmetric ele-
ments absolutely.

divided by 4, by 3 and by 6, from which exis-
tence of four-, three- and six-fold screw axes can
be discussed.
Fig. B.3 [p.35] shows that the space group

of taurine crystal has been determined to be
P21/c(#14).
Fig. B.4 shows reflection condition of

P21/c(#14) described in International Tables
for Crystallography (2006) Vol.A. The informa-
tion described in Figs. B.1 [p.34] and B.2 [p.34]
coincides with the condition in Fig. B.4 [p.35],
from which the space group has been deter-
mined to be P21/c(#14).
In the following description, how the extinc-

tion of reflections are caused by symmetries of
crystals depending on the space group, is ex-
plained.

B.1 Symmetric elements of
crystal derived based on
the group theory

Who showed the importance of group the-
ory to determine the crystal structure
for the first time was Shoji Nishikawa
(1884/12/5∼1952/1/5). Wyckoff (R.
W. G. Wyckoff; 1897/8/9∼1994/11/3)
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Table B.3: Symmetric elements of crystal (axes
and point).

who was strongly influenced by Nishikawa, sys-
temized and established the space group the-
ory that is widespread today and summarized in
International Tables for Crystallography (2006)
Vol.A.

As shown in Table B.1 [p.35], crystals are cat-
egorized into seven crystal systems depending
on their shapes of unit cells. Further, there are
several complex lattices whose backgrounds in
Table B.1 [p.35] are green, other than primitive
cells. Fourteen kinds of lattice except for ‘body-
centered monoclinic lattice’ are called Bravais
lattice.

‘Body-centered monoclinic lattice’ was added
by the present author’s own judgment. The
reason is that base-centered monoclinic lattice
can sometimes change to body-centered lattice
without changing the symmetry of monoclinic
lattice or changing volume of unit cell by rese-
lecting axes of unit cell.

In the first column of Table B.1 [p.35], Laue
groups and ranges of space group number are
summarized. Laue group is determined by sym-
metry of reciprocal lattice of crystals.

It has been clarified that crystals can be cat-
egorized into 230 space groups depending on
the symmetric elements as shown in Tables. B.1
[p.35], B.2 and B.3.

What is important to determine the space
group is the extinction rule, about which the

Figure B.5: Drawings for space group
P21/c(#14) in International Tables for Crystal-
lography (2006) Vol.A. Protein crystals do not
belong to this space group absolutely.

information can be extracted by referring to de-
scriptions in ‘process.out’ as shown in Figs. B.1
[p.34] and B.2 [p.34]. It can be viewed by click-
ing ‘View output file’ button in Fig. 2.21 of Part
2a manual.

B.2 Symbols of space groups

Fig. B.5 is a diagram on the first two pages
showing symmetric elements of crystal group
P121/c1 in International Tables for Crystallog-
raphy (2006) Vol.A, Chapter 7. Marks [1]-[17]
are as follows; [1]: Hermann-Mouguin notation,
[2]: Schönflies notation, [3]: Laue group, [4]:
crystal system, [5]: ordinal number of space
group, [6]: Hermann-Mouguin full notation, [7]:
unique axis, [8]: cell choice, [9]: graphic sym-
bol of c glide plane, [10]: graphic symbol of
21 screw axis, [11]: graphic symbol of sym-
metric center, [12]: graphic symbol of 21 screw
axis, [13]: graphic symbol of c glide plane, [14]:
graphic symbol of c glide plane, [15]: position
of atom,[16]: position of atom (an image due to
21 screw axis), [17]: position of atom (an image
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Table B.4: Extinctions owing to complex lat-
tice.

Table B.5: Extinction rules owing to glide
planes. Protein crystals do not have glide plane
absolutely.

due to c glide plane).

‘[8] CELL CHOICE 1’ corresponds to ‘set-
ting #1’ in Fig. B.3 [p.35]. ‘14 ’ described near
[9] is the height of c glide plane. About graphic
symbols of c glide plane [9], [13] and [14], re-
fer to Table B.2 [p.36], please. About graphic
symbols of 21 screw axis [10] and [12], refer
to Table B.3 [p.37]. Atoms at positions [16]
and [17] are images of atom at [15] by sym-
metric operations due to 21 screw axis and c
glide plane, respectively. ‘12+’ near [16] and
‘12−’ near [17] means that locations of atoms
at [16] and [17] are −xa + (12 + y)b + (12 − z)c
and xa+(12 − y)b+(12 + z)c, respectively when
that of [15] is xa+ yb+ zc. Comma (,) in ‘⃝’
at [17] means that this atom (or molecule) is an
enantiomer of those at [15] and [16].

Initial character of Hermann-Mouguin nota-
tion is P (or R partially for trigonal system) for
primitive lattice, A, B or C for base-centered
lattice, I for body-centered lattice or F for
face-centered lattice. In many cases of base-
centered lattice, C is mainly used for H-M no-
tations. However, there are four exceptions,

Table B.6: Extinction owing to screw axes.

i.e. Amm2(#38), Abm2(#39), Ama2(#40)
and Aba2(#41).

There are nine H-M full notations, i.e.
P121/c1, P121/n1, P121/a1, P1121/a,
P1121/n, P1121/b, P21/b11, P21/n11,
P21/c11 for P21/c due to arbitrariness to take
axes. There are plural H-M full notations for
an H-M notation in general. In some cases,
however, there is only one H-M full notation,
e.g. P212121 (orthorhombic #19) since it
has an identical symmetric element all in the
directions of a, b and c axes.

In the case of C2/c, one of H-M full nota-
tion is I12/a1 when changing the choice of unit
cell axes. This is the reason for ‘body-centered
monoclinic lattice’ is added in Table B.1 [p.35].

B.3 How to read extinction
rules

In this section, how to determine the space
group by reading ‘process.out’ as shown in Figs.
B.1 [p.34] and B.2 [p.34] and comparing them
with International Tables for Crystallography
(2006) Vol.A, Chapter 3.1, is described. When
the space group were determined not correctly,
it should be redetermined referring to the fol-
lowing description.

Table B.7 shows a part of International Ta-
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Table B.7: International Tables for Crystal-
lography (2006) Vol.A, A part of International
Tables for Crystallography (2006) Vol.A, Chap-
ter 3.1.

bles for Crystallography (2006) Vol.A, Chapter
3.1. Here, relations between the extinction rule
and space group, are summarized. You can re-
fer to pdf version of International Tables for
Crystallography (2006) Vol.A, Chapter 3.1 that
is placed on the desktop of computers.

In part [1] of Fig. B.1 [p.34] reflection con-
ditions for hkl all of which are not zero, is
described. Since no extinction can be found,
the first column of Table B.7 should be empty.
h+ k, k+ l and h+ k+ l in this column means
that reflection indices that satisfies h+ k = 2n,
k+ l = 2n and h+k+ l = 2n do not distinguish.
In first, second and third column in Table B.7,
‘= 2n’ is omitted.

In the case of Fig. B.1 [p.34], 0k0 and 00l re-
flections distinguish when k is odd and when l
is odd, respectively, which corresponds to [1],
[2] and [3] rows in Table B.7. Therefore, H-M
full notation of the space group of taurine is
P121/a1, P121/c1 or P121/n1. These all be-
long to P21/c(#14).

For redesignating space group in Crystal-
Structure 4.1, ‘Space Group’ Menu window as
shown in Fig. B.6 [p.39] can be opened by
clicking ‘Space Group’ from ‘Parameters’ menu.
Since b axis is usually taken as the main axis in
the case of monoclinic crystal system, P121/c1
should be selected. Then, click ‘Apply’ and
‘OK’ in this order, please.

Figure B.6: Redesignation of space group
in CrystalStructure 4.1. (in the case of small
molecular-weight crystal).

B.4 Examples of extinction
rules due to combinations
of symmetric elements

In this section, several examples are described,
in which the extinction rules are given by com-
binations of symmetric elements as summarized
in Tables B.4 [p.38], B.5 [p.38] and B.6.

In cases of small molecular-weight or-
ganic crystals, frequently found space groups
can be listed up in order of decreasing
as follows, P21/c(#14), P1(#2), C2/c(#15),
P212121(#19), P21(#4) . As many as 80% of
small molecular weight organic crystals are oc-
cupied by those with space groups that belong
to the above five.

In the cases of protein crystals, however,
Hermann-Morguin notations of their space
group do not have symbols of 1 (symmetric
center), m (mirror plane), a, b, c, d, e and
n (glide planes) absolutely since they need
both optical enantiomer molecules in spite
that protein molecules consist of only L amino
acids but not of D amino acids. (L and D
amino acids are optical enantiomer with each
other). Also in the cases of small molecular-
weight crystals, when they consist of chiral
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Figure B.7: Drawing for P1(#2) in Interna-
tional Tables for Crystallography (2006) Vol.A.
Since this space group has symmetric center,
protein crystals do not belong to it. The phase
problem is simple (0 or π (180◦)).

Figure B.8: Drawing for C12/c1[C2/c](#15) in
International Tables for Crystallography (2006)
Vol.A. Protein crystals do not belong to this
space group absolutely since it has glide plane.

molecules, H-M notations of them do not have
1, m, a, b, c, d, e and n. In the cases of racemic
crystals, these symbols are frequently included
in their H-M notations.

Read the following description, please by re-
ferring Tables B.4 [p.38], B.5 [p.38] and B.6.

It can be read from Fig. B.5 [p.37] that space
group P21/c (P121/c1) has c glide plane and
21 screw axis in the direction of b. Reflection
conditions due to these symmetric elements can
be read from Tables B.5 [p.38] and B.6.

Reflection conditions are described in In-
ternational Tables for Crystallography (2006)
Vol.A dividing three cases in which one, two
and three indices of hkl are not zero. Fol-
lowing this rule, the reflection conditions due to

Figure B.9: International Tables for Crystal-
lography (2006) Vol.A P212121(#19).

Figure B.10: International Tables for Crystal-
lography (2006) Vol.A P1211[P21(#4)].

c glide plane and 21 screw axis are described as
follows,

h0l : l = 2n,

0k0 : k = 2n,

00l : l = 2n.

This is found as shown in Fig. B.4 [p.35] in
International Tables for Crystallography (2006)
Vol.A.
Symmetric element that space group P1(#2)

has, is only symmetric center. Therefore, there
is no extinction. Protein crystals and chiral
crystals do not belong to this space group, ab-
solutely.
However, the phase problem is extremely sim-

ple (0 or π (180◦)). Therefore, the molecular
structure can be obtained frequently even for a
crystal with low quality.
Since the initial character of C12/c1 is C, it is

base-centered lattice. Since there are symmet-
ric centers indicated by small open circles, the
phase problem is very simple (0 or π (180◦)).
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Then, the molecular structure can be solved
with high possibility.

Due to arbitrariness to take axes, there are
three kinds of base-centered lattice, i.e. A base-
centered, B base-centered and C base-centered
lattice. However, let us focus the discussion on
C base-centered lattice, here. The reflection
condition shown in Table B.4 [p.38] can be writ-
ten down dividing it into three cases in which
one, two and three indices are not zero, as fol-
lows, [hkl : h + k = 2n], [hk0 : h + k = 2n],
[h0l : h = 2n], [0kl : k = 2n], [h00 : h = 2n],
[0k0 : k = 2n].

Referring to Fig. B.8[p.40], we can under-
stand the existence of c glide plane, n glide
plane and 21 screw axis that are perpendicu-
lar to b axis. The reflection condition due
to c glide plane and n glide plane perpendicular
to b axis can be read to be [h0l : h, l = 2n].
Further, that due to 21 screw axis can be read
to be [0k0 : k = 2n].

The logical product of the above conditions
can be written down as follows,

hkl : h+ k = 2n,

h0l : h, l = 2n,

0kl : k = 2n,

hk0 : h+ k = 2n,

0k0 : k = 2n,

h00 : h = 2n,

00l : l = 2n.

B.4.1 OrthorhombicP212121(#19)

It is evident from Fig. B.9 that P212121(#19)
has 21 screw axes all in the directions of a, b and
c axes. Therefore, referring to Table B.6 [p.38],
the reflection condition is given as follows,

h00 : h = 2n,

0k0 : k = 2n,

00l : l = 2n.

B.4.2 MonoclinicP1211[P21(#4)]

There are three H-M full notations for space
group P21(#4). Here, the description is given
for P1211.

Space group P1211 has 21 screw axis as shown
in Fig. B.10. Therefore, as described in Table

B.6 [p.38], it has a reflection condition as fol-
lows,

0k0 : k = 2n.

B.5 Mathematical proofs of
extinction rules

When the reader has time, refer to this chapter,
please.

The extinction of reflection is caused by the
existence of complex latticeC glide plane and
screw axis whose background color is green in
Tables B.1[p.35], B.2[p.36] and B.3[p.37]. To
the contrary, only the above three symmetric
elements give the extinction. However, protein
crystals do not have glide plane absolutely. In
this chapter, mathematical proofs of extinction
due to the above symmetric elements are de-
scribed.

For later description, let us note the definition
of crystal structure factor, Fhkl for hkl reflection
given as follows,

Fhkl =

∫
cell

ρ(r) exp[−i2π(h · r)]dv.

=

∫
cell

ρ(r) exp[−i2π(hx+ ky + lz)]dv.

(B.1)

Here,
∫
cell dv is a volume integral over a unit

cell, ρ(r) is electron density at location r (=
xa+yb+zc), and h (= ha∗+kb∗+lc∗) is a re-
ciprocal lattice vector giving h k l reflection.
With regard to reciprocal lattice, refer to Ap-
pendix A [p.30], please.

Symmetry element that makes N equivalent
points can be described as follows,

ρ[T (i)(r)] = ρ[T (0)(r)], i ∈ {0, 1, · · · , N − 1}.

Since Fhkl is zero when the N integral elements,

N−1∑
i=0

ρ[T (0)(r)] exp[−i2πh · T (i)(r)] = 0

That is to say,

N−1∑
i=0

exp[−i2πh · T (i)(r)] = 0 (B.2)
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B.5.1 Extinction rules due to com-
plex lattice

Table B.4 [p.38] summarizes the extinction rules
due to complex lattice. In the following de-
scription, mathematical proofs for those due to
base-centered, body-centered and face-centered
lattice are given.

B.5.1.1 Extinction due to base-centered
lattice

Symmetry of C base-centered lattice is de-
scribed as follows,

ρ[T
(i)
C (r)] = ρ[T

(0)
C (r)], i ∈ {0, 1}.

T
(0)
C (r) = xa+ yb+ zc,

T
(1)
C (r) = (x+

1

2
)a+ (y +

1

2
)b+ zc.

The extinction condition is described similarly
to (B.2) as follows:

1∑
i=0

exp[−i2πh · T (i)
C (r)] = 0. (B.3)

Here, mathematical convenience to calculate
∑

in (B.3), let us define fC(h, r) as follows,

fC(h, r)

= exp{−i2π[h(x+
1

4
) + k(y +

1

4
) + lz]}.

Therefore, the extinction condition is described
as follows,

fC(h, r)

× {exp[−i
π

2
(h+ k)] + exp[+i

π

2
(h+ k)]}

= 2fC(h, r) cos[
π

2
(h+ k)] = 0.

Since fC(h, r) is not zero in general, the extinc-
tion condition is given by

cos[
π

2
(h+ k)] = 0.

Since the above equation is satisfied when h+k
is odd, the reflection condition (not extinct) as
shown in Table B.4 [p.38] is given by

hkl : @h+ k = 2n

Here, l is an arbitrary integer.
Reflection conditions for A and B base-

centered lattice can be derived similarly to the
above description.

B.5.1.2 Extinction due to body-centered
lattice

Symmetry of body-centered lattice is described
as follows,

ρ[T
(i)
I (r)] = ρ[T

(0)
I (r)], i ∈ {0, 1}.

T
(0)
I (r) = xa+ yb+ zc,

T
(1)
I (r) = (x+

1

2
)a

+ (y +
1

2
)b

+ (z +
1

2
)c.

The extinction condition is described similarly
to (B.2) [p.41] as follows,

1∑
i=0

exp[−i2πh · T (i)
I (r)] = 0. (B.4)

For convenience for calculation of
∑

in (B.4),
let fI(h, r) be defined as follows,

fI(h, r) = exp{−i2π[h(x+
1

4
)

+k(y +
1

4
)

+l(z +
1

4
)]}.

Therefore, the extinction condition is given as
follows,

fI(h, r)×

{exp[− i
π

2
(h+ k + l)]

+ exp[ + i
π

2
(h+ k + l)]}

= 2fI(h, r) cos[
π

2
(h+ k + l)] = 0.

Since fI(h, r) is not zero in general, the extinc-
tion condition is given by

cos[
π

2
(h+ k + l)] = 0.

Since the above equation is satisfied when h +
k+l is odd, the reflection condition (not extinct)
as shown in Table B.4 [p.38], is given as follows,

hkl : h+ k + l = 2n
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B.5.1.3 Extinction due to face-centered
lattice

Symmetry of face-centered lattice is described
as follows,

ρ[T
(i)
F (r)] = ρ[T

(0)
F (r)], i ∈ {0, 1, 2, 3}.

T
(0)
F (r) = xa+ yb+ zc,

T
(1)
F (r) = xa+ (y +

1

2
)b+ (z +

1

2
)c,

T
(2)
F (r) = (x+

1

2
)a+ yb+ (z +

1

2
)c,

T
(3)
F (r) = (x+

1

2
)a+ (y +

1

2
)b+ zc.

The extinction condition is described similarly
to (B.2) [p.41] by the following equation,

3∑
i=0

exp[−i2πh · T (i)
F (r)] = 0. (B.5)

Here, for mathematical convenience to calculate∑
in (B.5), let us define fF (h, r) as follows,

fF (h, r) = exp{−i2π[h(x+
1

4
)

+k(y +
1

4
)

+l(z +
1

4
)]}.

Therefore, the extinction condition is given as
follows,

fF (h, r){exp[−i
π

2
(−h− k − l)]

+ exp[−i
π

2
(−h+ k + l)]

+ exp[−i
π

2
(+h− k + l)]

+ exp[−i
π

2
(+h+ k − l)]} (B.6)

= 2fF (h, r){exp(+i
π

2
h) cos[

π

2
(k + l)]

+ exp(−i
π

2
h) cos[

π

2
(k − l)]} = 0.

(B.7)

Since fF (h, r) is not zero in general, the extinc-
tion condition is represented as follows,

cos[
π

2
(k + l)] = 0,

cos[
π

2
(k − l)] = 0.

[(k + l is even) and (k − l is even)] is identical
to [(both k and l are even) or (both k and l are
od)] i.e. k + l = 2n. Here, h is an arbitrary
integer. Since (B.6) is symmetrical for h, k and
l, equations similar to (B.7) can be derived also
for h+ k, h− k and h+ l, h− l. Then, The re-
flection condition (not distinguishing) as shown
in Table B.4 [p.38] is given by

hkl : h+ k = 2n,

hkl : h+ l = 2n,

hkl : l + k = 2n.

That is to say, reflection distinguishes when
even and odd integers are mixed in h, k and
l.

B.5.2 Extinction owing to glide axes

In cases of protein crystals, they do not have
glide axis absolutely since they consist of only
L amino acids but of not D amino acids (optical
isomers of L amino acids).

B.5.2.1 Extinction due to axial glide plane

Symmetry due to c glide plane perpendicular to
b axis whose height is 1

4 b, is given by

ρ[T
(i)
Bc(r)] = ρ[T

(0)
Bc (r)], i ∈ {0, 1}.

T
(0)
Bc (r) = xa+ yb+ zc,

T
(1)
Bc (r) = xa+ (

1

2
− y)b+ (

1

2
+ z)c,

Similarly to (B.2) [p.41], the extinction condi-
tion is given by

1∑
i=0

exp[−i2πh · T (i)
Bc(r)] = 0. (B.8)

Here, for mathematical convenience to calculate∑
in (B.8) [p.43], let us define fBc(h, r) as fol-

lows,

fBc(h, r) = exp{−i2π[hx+ k
1

4
+ l(

1

4
+ z)]}.

fBc(h, r)×{
exp{+i2π[k(

1

4
− y) + l

1

4
]}

+exp{−i2π[k(
1

4
− y) + l

1

4
]}
}

= 2fBc(h, r) cos{
π

2
[k(1− 4y) + l]} = 0.
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Since fF (h, r) is not zero in general, reflections
distinguish when the term of cos{ } is zero, i.e.
when h is arbitrary, k = 0 and l is odd, the
reflection condition as shown in Table B.5 [p.38]
is given by

h0l : l = 2n

B.5.2.2 Extinction due to double glide
plane (e glide plane)

Therefore, Symmetry due to double glide plane
(e glide plane) whose height is zero, is described
as follows,

ρ[T
(i)
Be(r)] = ρ[T

(0)
Be (r)], i ∈ {0, 1, 2, 3}.

T
(0)
Be (r) = xa+ yb+ zc,

T
(1)
Be (r) = (x+

1

2
)a− yb+ zc,

T
(2)
Be (r) = xa− yb+ (z +

1

2
)c,

T
(3)
Be (r) = (x+

1

2
)a+ yb+ (z +

1

2
)c,

Similarly to (B.2) [p.41], the extinction rule is
described by

3∑
i=0

exp[−i2πh · T (i)
Be(r)] = 0. (B.9)

Here, for mathematical convinience to calculate∑
in (B.9), let us define fBe(h, r) as follows,

fBe(h, r) = exp{−i2π[h(
1

4
+ x) + l(

1

4
+ z)]}.

Therefore, the extinction condition can be de-
scribed as follows,

fBe(h, r)×{
exp{−i2π[−h

1

4
+ ky − l

1

4
]}

+exp{−i2π[+h
1

4
− ky − l

1

4
]}

+exp{−i2π[−h
1

4
− ky + l

1

4
]}

+exp{−i2π[+h
1

4
+ ky + l

1

4
]}
}

= 2fBe(h, r)×{
exp(−i2πky) cos[

π

2
(h+ l)]

+ exp(+i2πky) cos[
π

2
(h− l)]

}
= 0.

Since fBe(h, r) and exp(±i2πky) are not zero in
general, the above extinction condition is satis-
fied when cos[π2 (h + l)] = 0cos[π2 (h − l)] = 0.
hkl reflections distinguishes when both h + l
and h− l are odd, i.e. when k is arbitrary and
[(h,kareodd)or(h, k are even)]. The reflection
condition (not extinct) is given by

hkl : h+ l = 2n

With regard to other double glide planes, ex-
tinction rules as shown in Table B.5 [p.38] can
be derived in a similar way.

B.5.2.3 Extinction due to diagonal glide
plane

Symmetry due to diagonal glide plane (n glide
plane) whose height is zero, is described as fol-
lows,

ρ[T
(i)
Bn(r)] = ρ[T

(0)
Bn(r)], i ∈ {0, 1}.

T
(0)
Bn(r) = xa+ yb+ zc,

T
(1)
Bn(r) = (

1

2
+ x)a− yb+ (

1

2
+ z)c,

The extinction condition is described similarly
to (B.2) [p.41] as follows,

1∑
i=0

exp[−i2πh · T (i)
Bn(r)] = 0. (B.10)

Here, mathematical convenience to calculate
∑

in (B.10), let us define fBn(h, r) as follows,

fBn(h, r) = exp{−i2π[h(
1

4
+ x) + l(

1

4
+ z)]}.

Therefore, the extinction condition is described
as follows,

fBn(h, r)×{
exp{−i2π[−h

1

4
+ ky − l

1

4
]}

+exp{−i2π[h
1

4
− ky + l

1

4
]}
}

= 2fBn(h, r) cos{
π

2
[4ky − (h+ l)]} = 0.

Since fBn(h, r) is not zero in general, hkl re-
flections distinguish when the term of cos{ } is
zero. Therefore, the reflection condition (not
extinct) is described as follows,

h0l : h+ l = 2n

With regard to other orthogonal glide plane, re-
flection conditions as summarized in Table B.5
[p.38] can be derived.
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B.5.3 Extinction due to screw axes

Table B.6 [p.38] summarizes extinction rules
due to pq screw axes. Here p ∈ {2, 3, 4, 6} and
q ∈ {1, · · · , p−1}, pq screw axis makes p equiv-
alent points such that they translate by qc/p,
(qa/p or qb/p) when rotated by 2π/p around
the axis. As summarized in Table B.6 [p.38],
reflection condition [00l : l = 2n] is given by
21, 42 and 63 screw axes since they make layers
of atoms (molecules) whose spacing is c, (a or
b).

Similarly, reflection conditions [000l : l =
3n] for 31, 32, 62, 64 screw axes, [00l : l = 4n]
for 41, 43 screw axes and [000l : l = 6n] for 61,
65screw axes can be derived. For mathemati-
cal proof of reflection conditions for three- and
six-fold screw axes, refer to Appendix C [p.48],
please.

In the following description, mathematical
proofs of extinction rules due to 21, 41 and 42
screw axes.

B.5.3.1 Extinction due to 21 screw axis

Symmetry of 21 screw axis in the direction of c
located at 1

2 a+ 1
2 b, is described as follows,

ρ[T
(i)
21

(r)] = ρ[T
(0)
21

(r)], i ∈ {0, 1}.

T
(0)
21

(r) = (
1

2
+ x)a+ (

1

2
+ y)b+ zc,

T
(1)
21

(r) = (
1

2
− x)a+ (

1

2
− y)b+ (

1

2
+ z)c.

The extinction condition is described similarly
to (B.2) [p.41] as follows,

1∑
i=0

exp[−i2πh · T (i)
21

(r)] = 0. (B.11)

Here, for mathematical convinience to calculate∑
of (B.11), let us define f21(h, r) as follows,

f21(h, r) = exp{−i2π[h
1

2
+ k

1

2
+ l(

1

4
+ z)]}.

Therefore, summation in (B.11) can be de-
formed to give the following extinction condi-

tion,

f21(h, r)×{
exp{−i2π[hx+ ky − l

1

4
]}

+exp{−i2π[−hx− ky + l
1

4
]}
}

= f21(h, r)×

cos{ π

2
[4(hx+ ky)− l]} = 0.

Since term of cos{ } is zero when h, k = 0 and l
is odd, the reflection condition (not extinct) is
given by

00l : l = 2n.

Similarly, the reflection conditions due to c
and a screw axes can be obtained as summa-
rized in Table B.6 [p.38].

B.5.3.2 Extinction due to 41 screw axis

Symmetry due to 41 screw axis that is located
at the origin, can be described as follows,

ρ[T
(i)
41

(r)] = ρ[T
(0)
41

(r)], i ∈ {0, 1, 2, 3}.

T
(0)
41

(r) = +xa+ yb+
1

8
c,

T
(1)
41

(r) = −ya+ xb+
3

8
c,

T
(2)
41

(r) = −xa− yb+
5

8
c,

T
(3)
41

(r) = +ya− xb+
7

8
c.

Here, the extinction condition is described sim-
ilarly to (B.2) [p.41] as follows,

3∑
i=0

exp[−i2πh · T (i)
41

(r)] = 0. (B.12)

Here, let us define f41(h, r) as follows,

f41(h, r) = exp(−i2πl
1

2
).

Therefore, summation in (B.12) can be de-
formed to give the following extinction condi-
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tion,

f41(h, r)×{
exp[−i2π(+hx+ ky − l

3

8
)]

+ exp[−i2π(−hy + kx− l
1

8
)]

+ exp[−i2π(−hx− ky + l
1

8
)]

+ exp[−i2π(+hy − kx+ l
3

8
)]
}

= 2f41(h, r)×{
exp(+i2πl

1

8
) cos{ π

2
[4(hx+ ky)− l]}

+exp(−i2πl
1

8
) cos{ π

2
[4(hy − kx) + l]}

}
= 0.

When h, k = 0 and l is even, cos{ } in the first
and second terms of the above equation have an
identical value (1 or −1). Under an assumption
that this condition is satisfied, let us discuss the
condition that the above equation gives value of
zero as follows,

exp(−i2πl
1

8
) + exp(−i2πl

1

8
)

= 2 cos(
π

2
· l

2
) = 0.

The above equation means that reflections dis-
tinguish when l/2 is odd. Therefore, the reflec-
tion condition (not extinct) can be described as
follows,

00l : l = 4n.

Similarly, reflection condition due to 43 screw
axis can be obtained.

B.5.3.3 Extinction due to 42 screw axis

Symmetry due to 42 screw axis at the origin can
be describes as follows,

ρ[T
(i)
42

(r)] = ρ[T
(0)
42

(r)], i ∈ {0, 1, 2, 3}.

T
(0)
42

(r) = +xa+ yb+
1

4
c,

T
(1)
42

(r) = −ya+ xb+
3

4
c,

T
(2)
42

(r) = −xa− yb+
1

4
c,

T
(3)
42

(r) = +ya− xb+
3

4
c.

A point translates by 2
4 c when rotating by 2π

4
around the axis. Here, note that the heights

of T
(2)
42

(r) and T
(3)
42

(r) are 5
4 c and 7

4 c which

are equivalent to 1
4 c, 3

4 c due to translation
symmetry of unit cell.
The, the extinction condition is described

similarly to (B.2) [p.41] as follows,

3∑
i=0

exp[−i2πh · T (i)
42

] = 0. (B.13)

Here, for mathematical convenience to calculate∑
in (B.13), let f42(h, r) be dfined as follows,

f42(h, r) = exp[−i2π(l
1

2
)].

f42(h, r) Therefore, deforming the
∑

of
(B.13), the extinction condition can be obtained
as follows,

f42(h, r)×{
exp[−i2π(+hx+ ky − l

1

4
)]

+ exp[−i2π(−ky + hx+ l
1

4
)]

+ exp[−i2π(−hx− ky − l
1

4
)]

+ exp[−i2π(+kx− hy + l
1

4
)]
}
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= 2f42(h, r)×{
exp(+i2πl

1

4
) cos[2π(hx+ ky)]

+ exp(−i2πl
1

4
) cos[2π(kx− hy)]

}
= 0.

The above extinction can be discussed when the
content of cos[ ] is zero. Under the assumption
that the above condition is satisfied, the above
equation can be further deformed as follows,

exp(−i2πl
1

4
) + exp(+i2πl

1

4
)

= 2 cos(
π

2
l) = 0.

Therefore, the reflection condition (not extinct)
can be described as follows,

00l : l = 2n.

Reflection condition due to 63 screw axis is the
same as the above description. With regard
to this, refer to §C.2.5 [p.53] in Appendix C,
please.



Appendix C

Reflection indeices and extinction
rules in the cases of trigonal and
hexagonal crystals

Figure C.1: International Tables for Crys-
tallography (2006) Vol.A, Symmetric elements.
P3121(#152).

Read this chapter when the reader has time,
please.

In cases of trigonal and hexagonal crystal sys-
tem, reflection vectors are usually indexed by
four integers, h k i l(h+ k+ i = 0). This chap-
ter describes the reasonableness of this way of
indexing and the extinction rules due to three-
and six-fold screw axes.

C.1 Cases of trigonal system

C.1.1 Diagram shown in Interna-
tional Tables for Crystallogra-
phy (2006) Vol.A

Fig. C.1 is a diagram in International Ta-
bles for Crystallography (2006) Vol.A that

Figure C.2: International Tables for Crys-
tallography (2006) Vol.A, Positions of atoms.
P3121(#152).

shows symmetric elements of space group
P3121(#152). Fig. C.2 shows atomic coordi-
nates of P3121(#152).

The unit cell is usually taken to be a rhombus
that consists of two regular triangles as shown in
Figs. C.1 and C.2. Space group P3121(#152)
has three-fold screw axis in the direction of c
axis and two-fold screw axis perpendicular to
c axis. However, in the case of trigonal sys-
tem, there is no extinction due to the two-fold
screw axis. About this, refer to the description
in §C.1.4 [p.50], please.

48
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C.1.2 Real and reciprocal coordi-
nates

Fig. C.3 shows real and reciprocal primitive
translation vectors in the cases of trigonal and
hexagonal crystal system.

a, b and c axes are usually taken such that
the angle spanned by a and b axes is 120◦ and
c is parallel to three-fold rotation or screw axis.
There are three way of taking a and b axes as
shown in Fig. C.3 i.e. combinations of a0 and
b0 axes, a1 and b1 axes and a2 and b2 axes.

reciprocal primitive vectors are defined as fol-
lows:

a∗ =
b× c

a · (b× c)
,

b∗ =
c× a

a · (b× c)
,

c∗ =
a× b

a · (b× c)
.

About the reasonableness of the above defini-
tion, refer to Appendix A [p.30], please.

By following the above definition, in Fig.
C.3, real (black) and reciprocal (gray) primi-
tive translation vectors are drawn. Referring to
this figure, the following relations can easily be
understood,

a∗0 = −b∗
1

= −a∗2 + b∗
2,

b∗
0 = a∗1 − b∗

1

= −a∗2.

From the above relations, reciprocal lattice vec-
tor ha∗0 + kb∗

0 + lc∗ can also be represented as
follows:

ha∗0 + kb∗
0 + lc∗

= ka∗1 + ib∗
1 + lc∗

= ia∗2 + hb∗
2 + lc∗,

where, h+ k + i = 0.

By using four indices h, k, i and l (h+k+i = 0)
to describe reflections, we can easily understand
the equivalence of reflections due to three-fold
symmetry. For example, a reflection described
as 1 1 0 by using a∗0-b

∗
0-c

∗ coordinate system is
equivalent to 1 2 0 by a∗1-b

∗
1-c

∗ system and also
to 2 1 0 by a∗2-b

∗
2-c

∗ system. This reflection
1 1 2 0 described using four indices can easily
be understood to be equivalnt to 1 2 1 0 and
2 1 1 0.

Figure C.3: Real (black) and reciprocal (gray)
primitive translation vectors.

C.1.3 Derivation of extinction rule
due to 31 screw axis

Similarly to the description in Appendix B §B.5
[p.41], the extinction due to 31 screw axis can
be derived as follows.

Symmetry due to 31 screw axis at the origin
is described as follows:

ρ[T
(i)
31

(r)] = ρ[T
(0)
31

(r)], i ∈ {0, 1, 2}.

T
(0)
31

(r) = xa0 + yb0 + zc,

T
(1)
31

(r) = xa1 + yb1 + (
1

3
+ z)c,

T
(2)
31

(r) = xa2 + yb2 + (
2

3
+ z)c. (C.1)

On the other hand, referring to Fig. C.3, the
following relations are evident.

a1 = b0,

b1 = −a0 − b0,

a2 = −a0 − b0,

b2 = a0,

Substituting the above equation into (C.1),

ρ[T
(i)
31

(r)] = ρ[T
(0)
31

(r)], i ∈ {0, 1, 2}.

T
(0)
31

(r) = xa0 + yb0 + zc,

T
(1)
31

(r) = −ya0 + (x− y)b0 + (
1

3
+ z)c,

T
(2)
31

(r) = (−x+ y)a0 − xb0 + (
2

3
+ z)c.
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The extinction condition can be described sim-
ilarly to (B.2) [p.41] as follows:

2∑
i=0

exp[−i2πh · T (i)
31

(r)] = 0. (C.2)

Here, for mathematical convenience to calculate∑
of (C.2), let us define f31(h, r) as follows:

f31(h, r) = exp[−i2π(lz)].

Therefore, (C.2) can be deformed as follows:

f31(h, r)×{
exp{−i2π[hx+ ky]}

+exp{−i2π[−hy + k(x− y) + l
1

3
]}

+exp{−i2π[+h(−x+ y)− kx+ l
2

3
]}
}
= 0.

Since terms [hx + ky], [−hy + k(x − y)] and
[h(−x+y)−kx] in exp{ } of the above equation
depend on value of x and y, the extinction can
be discussed only when h = k = i = 0. Under
this condition, the extinction condition can be
described as follows:

1 + exp(−i2πl
1

3
) + exp(−i2πl

2

3
) = 0.

The second and third terms of on the left-
hand side of the above equation are 1 and
1 not giving extinction when l = 3n,
exp(−i2π 1

3 ) and exp(−i2π 2
3 ) giving extinc-

tion and exp(−i2π 2
3 ) and exp(−i2π 1

3 ) giving
extinction. Therefore, the reflection condition
can be described as follows:

000l : l = 3n.

With similar consideration, the same reflec-
tion condition for 32 can be derived.

C.1.4 On the absence of extinction
due to 21 screw axis perpendic-
ular to c.

In Fig. C.1 [p.48], there are 21 screw axes per-
pendicular to c at positions of x = 1

2 and
y = 1

2 . However, these 21 screw axes cause
no extinction. The reason is that the angle
spanned by a and a∗ and that spanned by b
andb∗ are not zero (not parallel). About this,
refer to the following description, please.

Symmetric operation due to rotation around
a0 is represented by movement of point on a
plane perpendicular to a0. Referring to Fig.
C.3, reciprocal vectors perpendicular to a0 are
c∗0 and b∗

0. A real vector parallel to b∗
0 is repre-

sented by a linear combination of a0 and b0,
as 1

2 a0 + b0. Therefore, Symmetry due to
21 screw axis in the direction of a0 located at
(y, z) = 1

2 , 1
3 is represented as follows:

ρ[T
(i)
21

(r)] = ρ[T
(0)
21

(r)], i ∈ {0, 1}.

T
(0)
21

(r) = xa0

+ (
1

2
+ y)(

1

2
a0 + b0)

+ (
1

3
+ z)c

= (x+
1

4
+

1

2
y)a0

+ (
1

2
+ y)b0

+ (
1

3
+ z)c,

T
(1)
21

(r) = (
1

2
+ x)a0

+ (
1

2
− y)(

1

2
a0 + b0)

+ (
1

3
− z)c

= (x+
3

4
− 1

2
y)a0

+ (
1

2
− y)b0

+ (
1

3
− z)c.

The extinction condition (while not existing) is
represented similarly to (B.2) [p.41] as follows:

1∑
i=0

exp[−i2πh · T (i)
21

(r)] = 0. (C.3)

Here, for mathematical convenience to calculate∑
of (C.3), let us define f21(h, r) as follows:

f21(h, r) = exp{−i2π[h(
1

2
+ x) + k

1

2
+ l

1

3
]}.

Therefore,
∑

of (C.3) can be deformed as fol-
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Figure C.4: International Tables for Crys-
tallography (2006) Vol.A, Symmetric elements.
P6122(#178).

lows:

f21(h, r)×{
exp{−i2π[h(

1

4
− 1

2
y)− ky − lz]}

+exp{−i2π[−h(
1

4
− 1

2
y) + ky + lz]}

}
= f21(h, r)×

cos{2π[h( 1

4
− 1

2
y)− ky − lz]} = 0.

The above equation reveals that there is no ex-
tinction due to 21 screw axis perpendicular to
c since terms of h, k and l all depend to values
of y or z. The second term −h 1

2 y in cos{ }
of the above equation exists since a0 is not par-
allel to a∗0. If there were a reciprocal primi-
tive vector parallel to the screw axis, we can
discuss the extinction under the condition that
k, l = 0. When there is no reciprocal primitive
vector parallel to the screw axis, there is no ex-
tinction due to it.

In a similar way, it can be verified that there
is no extinction due to screw axes parallel to b0

or a0 + b0.

C.2 Case of hexagonal system

C.2.1 Figure shown in Interna-
tional Tables for Crystallogra-
phy (2006) Vol.A

Fig. C.4 is a drawing for space group
P6122(#178) in International Tables for Crys-

Figure C.5: International Tables for Crys-
tallography (2006) Vol.A, Positions of atoms.
P6122(#178).

tallography (2006) Vol.A that shows symmetric
elements. Fig. C.5 shows coordinates of atoms.

The unit cell is usually taken similarly to that
in the case of trigonal system as shown in Fig.
C.1 [p.48] and C.2 [p.48]. There are 21 screw
axes perpendicular to c. However they do not
cause extinction similarly to the case of trigonal
system.

C.2.2 Coordinates for describing six-
fold screw axes

For describing positions of atoms that are ro-
tated by i

62π (i ∈ {0, 1, 2, 3, 4, 5}) from the orig-
inal position, let us prepare combinations of ai
and bi as follows:

ai bi i

a0 b0 0
a0 + b0 −a0 1
b0 −a0 − b0 2
−a0 −b0 3
−a0 − b0 a0 4
−b0 a0 + b0 5

By using the above coordinates, positions that
is rotated by i

62π (i ∈ {0, 1, 2, 3, 4, 5}) from the
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original position can be written as follows:

x0 = x, y0 = y,

x1 = x− y, y1 = x,

x2 = −y, y2 = x− y,

x3 = −x, y3 = −y,

x4 = −x+ y, y4 = −x,

x5 = y, y5 = −x+ y.

C.2.3 Derivation of extinction rule
due to 61 screw axis

Symmetry due to 61 screw axis located at the
origin in the direction of c, is described as fol-
lows:

ρ[T
(i)
61

(r)] = ρ[T
(0)
61

(r)], i ∈ {0, 1, 2, 3, 4, 5}.

T
(0)
61

(r) = xa0 + yb0 + zc,

T
(1)
61

(r) = (x− y)a0 + xb0 + (
1

6
+ z)c,

T
(2)
61

(r) = −ya0 + (x− y)b0 + (
2

6
+ z)c,

T
(3)
61

(r) = −xa0 − yb0 + (
3

6
+ z)c,

T
(4)
61

(r) = (−x+ y)a0 − xb0 + (
4

6
+ z)c,

T
(5)
61

(r) = ya0 + (−x+ y)b0 + (
5

6
+ z)c.

Similarly to (B.2) [p.41], the extinction condi-
tion is described as follows:

5∑
i=0

exp[−i2πh · T (i)
61

(r)] = 0. (C.4)

For mathematical convenience, let us define
f61(h, r) as follows:

f61(h, r) = exp[−i2π(lz)].

From (C.4), the extinction condition is obtained
as follows:

f61(h, r)×{
exp{−i2π[hx+ ky]}

+exp{−i2π[h(x− y) + kx+ l
1

6
]}

+exp{−i2π[−hy + k(x− y) + l
2

6
]}

+exp{−i2π[−hx− ky + l
3

6
]}

+exp{−i2π[h(−x+ y)− kx+ l
4

6
]}

+exp{−i2π[hy + k(−x+ y) + l
5

6
]}
}
= 0.

The extinction can be discussed only when h =
k = i = 0. Under this condition, the above
extinction condition can be described as follows:

1

+ exp(−i2πl
1

6
)

+ exp(−i2πl
2

6
)

+ exp(−i2πl
3

6
)

+ exp(−i2πl
4

6
)

+ exp(−i2πl
5

6
) = 0. (C.5)

When l = 6n, reflections do not distinguish.
When l = 6n + i (i ∈ {1, 2, 3, 4, 5}), reflections
distinguish since phase interval of the six term
is an identical value −2π i

6 . The reflection con-
dition (not extinct) can be described a follows,

hkil : l = 6n.

Similarly, the same reflection condition can
be derived also for 61 screw axis.

In Fig. C.4, 21 and 31 screw axes in the direc-
tion of c are found. However, the logical prod-
uct of reflection conditions due to 61, 21 and 31
screw axes gives the same reflection condition
as described in the above equation.



C.2. CASE OF HEXAGONAL SYSTEM 53

C.2.4 Derivation of the extinction
due to 62 screw axis

The extinction condition due to 62 screw axis is
given similarly to (C.5) [p.52] as follows:

1

+ exp(−i2πl
1

3
)

+ exp(−i2πl
2

3
)

+1

+exp(−i2πl
1

3
)

+ exp(−i2πl
2

3
) = 0.

When l = 3n, reflections do not distinguish
since the six term have an identical value unity.
When l = 3n + i (i ∈ {1, 2}), reflections dis-
tinguish since phase interval of the six term is
an identical value −2π i

3 . Then, the reflection
condition (not extinct) is given by

hkil : l = 3n.

In a similar way, the same reflection condition

can be derived for 64 screw axis.

C.2.5 Derivation of extinction rule
due to 63 screw axis

An equation for 63 screw axis that corresponds
to (C.5) [p.52] is given by

1

+ exp(−i2πl
1

2
)

+1

+exp(−i2πl
1

2
)

+1

+exp(−i2πl
1

2
) = 0.

When l is even, all terms are unity giving no ex-
tinction. When l is odd, reflections distinguish
since phase interval of the six terms is an iden-
tical value −2π 1

2 giving extinction. Therefore,
the reflection condition (not extinct) is given by

hkil : l = 2n.

End of the document.
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