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Figure 0: Whole window of CrystalStructure. Molecular structure of sucrose.

Molecular structure of sucrose has been solved from diffraction data measured with CryAlisPro

At first, ‘*.cif od’ should be opened by clicking ‘Open Project’ in ‘[2] Flow chart’. The above
structure has been obtained only by clicking ‘[1] Auto’ button. This is a fortunate case for a
high-quality crystal of molecule with relatively simple structure.

The procedures shown in ‘[2] Flow chart’ should usually be done from up to down. The
molecular model can be three-dimensionally rotated by click&dragging the central part of the
window. Places around which indicated by ‘[3] In-plane rotation’, ‘[4] Zoom’, ‘[5] Horizontal
translation’ and ‘[6] Vertical translation’ can be click&dragged to do these operations.

‘CrystalStructure 4.1’ can be used also on a Dell computer that is placed near the entrance
of the room, other than the control computer for VariMax Dual in the same room (333). Dell
computer can be logged in by typing ‘hpxray’ both for user name and password.

In Appendix A [p.20], how reasonably defined the reciprocal lattice is, is described
In Appendix B [p.24], how to determine the space group from consideration on extinction rules.
In Appendix C [p.37], the reason for representing reflection vectors with four indices and

extinction rules for trigonal and hexagonal crystal systems.
Mathematical proofs for extinction rules described in Appendices B [p.24] and C [p.37] are

recommended to read for further understanding of extinction rules when the reader has time.
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Chapter 1

Making an account

If the user already has an account to login the
‘CrystalStructure 4.1’, the present chapter does
not have to be referred. Go to the next chapter
2 [p.3], please.

Figure 1.1: Login window.

Figure 1.2: ‘Administration’ should be selected
from ‘Tools’ menu.

1.1 Making an account

Click the icon of ‘CrytalStructure 4.1’ on
the desktop to display Fig. 1.1, please. To
make an account for the first time, ‘OK’ button

Figure 1.3: AdministrationCGeneral tab.

Figure 1.4: Administration, Users tab.

should be clicked after typing the login name
‘Administrator’ without password. While
‘General’ tab has been opened as shown in
Fig. 1.1, the default settings do not have to be
changed. Next, as shown in Fig. 1.2, click ‘Ad-
ministration’ in ‘Tools’ menu, please to display
Fig. 1.3. Open ‘Users’ tab in Fig. 1.4 and click
‘Add’ button on the upper right corner, please.

1



2 CHAPTER 1. MAKING AN ACCOUNT

Figure 1.5: AdministrationCGroups tab.

Then, ‘User Settings’ window as shown on the
lower part of this figure, opens. ‘Name’ should
be filled with a user name.

The name of laboratory is recommended to be
typed only with alphabetical characters. Kanji
character cannot be used. Password should
not be set. ‘Data directory’ can be arbitrarily
set. However, the name of laboratory is recom-
mended to be set as a new folder in C:\data\.

Figure 1.6: AdministrationCServers tab.

‘· · ·’ (browse button) can also be clicked to se-
lect or make a folder. Only ‘Users’ should be
checked in ‘Member of (Groups)’. In Fig. 1.5
‘Group’ tab has been opened. ‘Add’ button can
be clicked to make a new group in the same
user name. In Fig. 1.6, ‘Servers’ tab has been
opened. After selecting ‘CRYSTALS Server’,
click ‘OK’ button, please. After that, close the
window of ‘CrystalStructure’, please.



Chapter 2

Determination of molecular structure
with ‘CrystalStructure’

Login by double-clicking the icon of ‘Crystal-
Structure’ on the desktop with the login name,
please.

Procedures in ‘[2] Flow chart’ in Fig. 0 on the
cover of this manual should be done from up to
down.

Figure 2.1: Login window.

2.1 Open Project

It is recommended to copy the folder where
*.cif od and other files created by CryAlisPro

exist and to rename it. It should be opened
by clicking ‘Open Project’ on the flow chart
of CrystalStructure to display a file explorer as
shown in Fig. 2.2. Here, ‘Open’ in the lower left
corner of Fig. 2.2 should be clicked after select-
ing ‘*.cif od’ to display a text window as shown
in Fig. 2.3.

Figure 2.2: Project open

Figure 2.3: Text shown after opening the
project

3



4CHAPTER 2. DETERMINATIONOFMOLECULAR STRUCTUREWITH ‘CRYSTALSTRUCTURE’

Figure 2.4: X-ray setting menu

Figure 2.5: X-ray setting should be changed

2.2 Change of the parameters

2.2.1 Setting of the X-rays

On the menu bar of CrystalStructure, ‘Param-
eter’ can be clicked to display Figs. 2.4, 2.6 and
2.8.

Figure 2.6: Set of the diffractometer

Figure 2.7: Set of the diffractometer and detec-
tor

Figure 2.8: Set of the molecular formula

As shown in Fig. 2.5 (a) and (c) for Mo
and (b) and (c) for Cu, the wavelength in (a)
and (b), the attenator factors and the used
monochromator in (c) should be set.

2.2.2 Setting the diffractometer and
the detector

As shown in Fig. 2.6, ‘Diffractometer’ should
be clicked to open a window as shown in Fig.
2.7. ‘Rigaku HPAD/CCD’ and ‘XtaLAB P200’
should be selected and then click ‘OK’.



2.3. SELECTION OF THE REFINEMENT TOOLS 5

Figure 2.9: Setting the moleculaar formula and Z value

Figure 2.10: Selection of refinement tools.

Figure 2.11: Verification message for changing
refinement tools.

2.2.3 Change of the value of Z

‘Formula’ in Fig. 2.8 can be clicked to open the
periodic table of the elements in Fig. 2.9. If
the molecular formula shown on the upper left
corner is wrong, it should be changed by click-
ing the element and then typing the number of
atoms in a molecule to click ‘OK’ on the lower
right corner.

Since 1.55-1.73 is suggested as the estimated
Z value on the central lower part of Fig. 2.9, the
nearest natural number ‘2’ should be input as
the Z number. Z should be corrected because
‘4’ displayed in a red frame in Fig. 2.3 is wrong.

2.3 Selection of the refinement
tools

Figure 2.10 shows a window opened by click-
ing ‘Refinement tools’ submenu in ‘Tools’ menu
on the menu bar in CrystalStructure 4.1.
‘Shelx2013’ has been selected as default as
shown in Fig. 2.10 (a). However, ‘Crystal’ can
also be selected as shown in Fig. 2.10 (b). If
the refinement tool is changed to be ‘Crystals’,
a window as shown in Fig. 2.11 is displayed,
in which ‘OK’ button should be clicked to con-
tinue.



6CHAPTER 2. DETERMINATIONOFMOLECULAR STRUCTUREWITH ‘CRYSTALSTRUCTURE’

Figure 2.12: Message for average and absorp-
tion correction.

After determination of initial phases, the ob-
tained molecular structure should be refined,
about which refer to description in §2.6 [p.9],
please. ‘Shelx2013’ is a newest tool and then has
sophisticated functions such that many proce-
dures can automatically be done. On the other
hand, referring to the usage of ‘Crystals’, the
sequence of refinement can roughly be grasped.
In §2.6 [p.9], the usage of ‘Crystals’ is mainly
described. However, referring to this descrip-
tion, ‘Shelx2013’ can also be understood to use.

2.4 Preprocessing measured
data

2.4.1 Averaging equivalent diffrac-
tion data

‘Evaluate Data’ button in the flow chart (on the
upper left corner of Fig. 2.12) can be clicked to
open Fig. 2.12.

In an old version ‘CrystalStructure 4.0’,
There was ‘Average and absorption correction’
button in the central lower part in Fig. 2.12.
This has been abolished in the current version
‘CrystalStructure 4.1’. A message window as
shown in Fig. 2.13 has also been abolished such
that ‘Weighted average’ and ‘Absorption correc-
tion’ are necessarily done.

In an old version ‘CrystalStructure 4.0’,
whether averaging ‘Friedel mates’ is done or
not, can be selected. However, in the cur-
rent version ‘CrystalStructure 4.1’, averaging
‘Friedel mates’ is not done. ‘Friedel mate’ is
a pair of h k l and h k l reflections. According
to Friedel’s law, intensities h k l- and h k l-

Figure 2.13: Verification message for averaging
equivalent diffraction intensities. This message
window has been abolished.

Figure 2.14: Option window for averaging re-
flections.

reflected X-rays are the same since
∣∣Fh k l

∣∣2 =

|F ∗
h k l|

2. Friedel’s law is satisfied under an as-
sumption that there is no absorption of X-rays
in the crystal. However, when the absorption
of X-rays is taken into account, it should be as-
sumed that Fh k l ̸= F ∗

h k l. Then, Friedel’s law
is broken. As described later, whether left-
or right-handed structure the crystal has (ab-
solute structure), can be estimated from ‘Flack
Parameter’. Since the absorption effect is more
significant when using X-rays with long wave-
length, Cu Kα X-rays are more effective than
Mo Kα X-rays for determination of the abso-
lute structure. In the old version ‘CrystalStruc-
ture 4.0’, in a case of small crystal that includes
only light atoms, it was considered that good re-
sult can be obtained by averaging Friedel mates,
while the information about the absolute struc-
ture is lost. However, in the current version,
this was abolished such that Flack parameter
is necessarily estimated to determine absolute
structure.

By clicking ‘View output file’ button in Fig.
2.12, a text file ‘process.out’ can be displayed
of which a part is shown in Figs. B.1 [p.24]
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and B.2 [p.24], in which important informations
about extinction are described. If space group
determined by ‘CrystalStructure’ were wrong,
it should be reconsidered referring to Appendix
B [p.24].

‘OK’ button in Fig. 2.12 can be clicked to av-
erage equivalent reflections to display Fig. 2.14.
Here, click ‘OK’ button to continue, please.

2.5 Phase determination and
calculation of molecular
model

2.5.1 Direct method

In crystal structure analysis, there is a
difficulty called ‘phase problem’ that argu-
ment (phase) of crystal structure factor can-
not be measured while their amplitudes can
be directly measured. The direct method
is a very strong tool for phase determina-
tion developed by Hauptman (Herbert Aaron
Hauptman; 1917/2/14-2011/10/23) and Karle
(Jerome Karle; 1918/6/18-2013/6/6). It is
based on strong restrictions that are given for
phases of crystal structure factors by a very ev-
ident fact that electron density is positive real
function in the crystal. It was rapidly wide-
spread since Karle’s wife (Isabella Karle) coded
a computer program for phase determination
based on it in 1970’s. Hauptman and Karle was
awarded Nobel Prize in Chemistry for this work
in 1985.

2.5.2 Phase problem in cases of cen-
trosymmetric crystals

The crystal has symmetric center, the phase
problem is very simple, i.e. phases of all struc-
ture factors are zero or π (180◦). This can easily
be understood with the following consideration.
The structure factor Fh is defined by

Fh =

∫
cell

ρ(r) exp[−i2π(h · r)]dv (2.1)

=

∫
+cell/2

ρ(r) exp[−i2π(h · r)]dv

+

∫
−cell/2

ρ(−r) exp[+i2π(h · r)]dv. (2.2)

Figure 2.15: Selection of algorithm for phase
determination with the direct method.

∫
+cell/2 dv is a volume integral over half of the

unit cell,
∫
+cell/2 dv is a volume integral over the

other half of it, ρ(r) is electron density at loca-
tion r. h(= ha∗ +kb∗+lc∗) is reciprocal lattice
vector giving hkl reflection. With regard to the
reciprocal lattice, refer to Appendix A [p.20],
please. When the crystal has symmetric center,
since ρ(−r) = ρ(r) when taking it as the ori-
gin, contents in integrals of the first and second
terms in (2.2) are complex conjugate with each
other. Therefore, Fh is necessarily a real value
with an argument (phase) of 0 or π (180◦).

Symmetric center can frequently be found in
cases of racemic crystals that have both right-
and left-handed molecules with an identical ra-
tio. In cases of centrosymmetric crystals, the
molecular structure can be solved even when the
quality of crystal is relatively low. However, ef-
fort to obtain a high-quality crystal should be
made to decrease the R factor.

When the crystal has only either of left- or
right-handed molecules as a protein crystal that
consists of only L amino acid, it does not have
symmetry center absolutely.

2.5.3 Determination of initial phases
with the direct method

As shown in Fig. 0 on the cover of this manual,
the molecular structure can sometimes be
solved just by clicking ‘[1] Auto’ button au-
tomatically to phase crystal structure factors.
However, this is a fortunate case. In gen-
eral, a phase determination algorithm should
usually be chosen to obtain initial phases.

The following description is written under an
assumption that ‘SIR92’ is selected.

In Fig. 2.15, ‘SIR92’ has been selected as a
phase determination algorithm. ‘Default’ can
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Figure 2.16: Success message of phase determi-
nation.

Figure 2.17: Molecular model of solved struc-
ture.

Figure 2.18: Least square fitting window
(Shelx).

Figure 2.19: Least square fitting window (Crys-
tals).

Figure 2.20: Situation of least-square fitting.
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Figure 2.21: Text window showing fitness of the
least square fitting.

be clicked to start the process of phase deter-
mination. Newer versions of ‘SIR’ have higher
functions but is time-consuming.

Figure 2.16 is a message found in bottom
part of CrystalStructure window that the crys-
tal structure has been solved successfully by
obtaining initial phases. Figure 2.17 in which
the obtained molecular structure is shown, can
be found by minimizing the white text win-
dow. If molecular structure cannot be solved
by using ‘SIR92’ with ‘Default’ option, try it
again with ‘Hard’ option. When it does not
go well, try newer versions of ‘SIR’, please.

If the initial phases were not determined
by using ‘SIR’, space group should be recon-
sider referring to Appendix B [p.24]. In such
a case, ‘CrystalStructure’ is recommended to
be finished. Retry the procedure described
in §2.1 [p.3] after copying five files, ‘Crystal-
Clear.cif’, ‘f2plus.dat’, ‘shelx.hkl’, ‘shelx.p4p’
and ‘texray.inf’ into another new folder.

2.6 Optimization of the molec-
ular structure

2.6.1 Optimization with isotropic
temperature factors

‘Refine’ button on the flow chart can be clicked
to open ‘Least Squares’ and ‘Fourier’ submenu.
‘Least Squares’ can be clicked to display Fig.
2.18 or 2.19 depending on which ‘Shelx2013’ or
‘Crystals’ is selected as the refinement tool.

In the case of ‘Shelxl2013’, the usage is eas-
ier than ‘Crystals’ since the refinement is au-
tomatically done only by clicking ‘OK’ button
after clicking ‘Use recommended weights’ but-
ton. When R factor decreases sufficiently us-
ing ‘Shelxl2013’, ‘Refine extinction’ check box
in Fig. 2.18 should be checked. However, if R
factor increases by checking ‘Refine extinction’,
refinement should be done again without check-
ing ‘Refine extinction’.

The following description is mainly given un-
der an assumption that ‘Crystals’ has been
chose as the refinement tool as shown in Fig.
2.10 (b) [p.5].

In the case of ‘Crystals’, at first, Click
‘Run’button after set 2.0 for ‘Sigma cutoff’, F
for ‘Refine on’ and Unit for ‘Weights’. Result
of least-square fitting is displayed as shown in
Fig. 2.20. After repeating this procedure sev-
eral times, ‘Sigma cutoff’ should be changed to
be 0.00.

‘View output file’ button in Fig. 2.20 can be
clicked to display refinement results as shown
in Fig. 2.21 [p.9] in which reflection indices
of which the discrepancy between the absolute
value of observed structure factor |Fo| and that
calculated based on the structure model |Fc| are
summarized. Green spheres found in Fig. 2.22
[p.10] shows positions of peaks that are not as-
signed for atoms. These can be hidden by click-
ing ‘[1] Peak ON/OFF’ button.

2.6.2 Optimization with anisotropic
temperature factors

‘Refinement Attributes’ appearing clicked by
‘Model’ button in the flow chart as shown in

Fig. 2.23, can be clicked to display Fig. 2.24.
Here, ‘xyz’ and ‘aniso’ should be checked
such thatoptimization of xyz coordinates and
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Figure 2.22: Green spheres can be hidden by
clicking ‘[1] Peak ON/OFF’ button.

Figure 2.23: ‘Refinement attributes’ should be
clicked.

anisotropic temperature factor are applied. Af-
ter clicking ‘All non-hydrogen’ button, ‘Apply’
button can be checked to apply the checked con-
ditions to all no-hydrogen atoms as shown in
Fig. 2.25

‘OK’ button can be clicked such that atoms
in the molecular model are displayed as cubes
as shown in Fig. 2.26. The same procedure as
for isotropic temperature factors can be done
to display Fig. 2.27. Here, ‘OK’ button can be
clicked to continue.

Figure 2.24: Position refinement and
anisotropic temperature factor are applied
for non-hydrogen atoms.

Figure 2.25: Anisotropic temperature factors
have been applied for non-hydrogen atoms.
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Figure 2.26: Shapes of non-hydrogen atoms
changed to be cubes.

Figure 2.27: Window showing the fitting situa-
tion.

Figure 2.28: Process of fitting with hydrogen
atoms.

Figure 2.29: Selection of atoms with no hydro-
gen.

2.7 Optimization taking into
account hydrogen atoms

2.7.1 Automatic assignment of hy-
drogen atoms

Figure 2.28 can be displayed by clicking ‘Model’
button in the flow chart. ‘[1] Add hydrogens’
button in Fig. 2.28 can be clicked to display Fig.
2.29. The same result is given by clicking ‘Add
hydrogens’ in the menu appearing with ‘Model’
button in the flow chart clicked in Fig. 2.28.
In fortunate cases, All hydrogen atoms can be
automatically assigned just by clicking ‘Gener-
ate all hydrogen atoms geometrically’ button in
Fig. 2.29. In general, hydrogen atoms should be
assigned by considering solid geometrical con-
figuration of the molecular model.

2.7.2 Manual assignment of hydrogen
atoms

After checking ‘None’ radio button as shown in
Fig. 2.29 [p.11], atoms considered to be bonded
with no hydrogen should be clicked. Then, click
‘Apply’ button, please. Next, after clicking ‘Hy-
droxy’ radio button in Fig. 2.30, atoms that
are considered to be hydroxyl oxygen should be
clicked and then click ‘Apply’ button, please.

Similarly, atoms of methine carbon and
methylene carbon should be selected by click-
ing as shown in Figs. 2.31 and 2.32. After all
non-hydrogen atoms are assigned, ‘OK’ button
should be clicked to display Fig. 2.33.
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Figure 2.30: Selection of hydroxi oxigens.

Figure 2.31: Selection of methine carbon.

2.7.3 Execution of least square fitting

‘Model’ button in the flow chart should be
clicked to display Fig. 2.34. Here, ‘Refinement
attributes’ should be clicked to display Fig.
2.35.

Figure 2.32: Selection of methylene carbon.

Here, after checking only ‘xyz’ check box, ‘All
hydrogens’ buttons and then ‘Apply’ button can
be clicked such that positions of all hydrogen
atoms are optimized. Then, click ‘OK’ button,
please.

After clicking ‘Refine’ button in the flow
chart, ‘Least squares’ button can be clicked
to display Fig. 2.36. After setting 0.00 for

Figure 2.33: All hydrogen atoms have been as-
signed.

Figure 2.34: Refinement settings.

Figure 2.35: Refinement settings for hydrogen
positions.
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Figure 2.36: Refinement settings with
‘Sheldrick’ weights.

Figure 2.37: Calculation of weights.

Figure 2.38: Refinement results.

‘Sigma cutoff:’, ‘F-squared’ for ‘Refine on:’ and
‘Sheldrick’ for ‘Weights:’, ‘Weights’ tab should
be opened as shown in Fig. 2.37. ‘Calculate val-
ues’ button can be clicked such that ‘Weights:’
used when doing least square fitting is calcu-
lated and displayed. Here, ‘OK’ button and
then ‘Run’ button can be clicked to display the
result of least square fitting as shown in Fig.
2.38.

Open ‘Weight’ tab again as shown in Fig. 2.37
in the refinement setting window and then click
‘Calculate values’ button to display Fig. 2.39
[p.14], please. By clicking ‘OK’ button, ‘De-
fault’ tab is found to be opened as shown in
Fig. 2.40 [p.14]. Here, parameters should be set
as in this figure.

Note that ‘Refine extinction’ and ‘Flack
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Figure 2.39: Calculation of weights (again).

Figure 2.40: Refinement settings (again).

Parameter’ have been checked. ‘Extinction ef-
fect’ is a phenomenon that reflected X-ray in-
tensity decreases due to dynamical diffraction
effect. ‘Flack parameter’ is a parameter in a
range of 0 ∼ 1 that indicates whether cor-
rect or notthe obtained absolute structure is.
Least square fitting can be started by clicking
‘Run’ button to display Fig. 2.41. Smaller de-
viation of ‘Flack parameter’ from 0 than from
1 means that the obtained absolute structure is
right with a high possibility. The value 0.833
as ‘Flack parameter’ shown here means that
the absolute structure is not right. Here, check
‘Check Acta’ for estimating the validity for pub-
lication in Acta Cryst. C to click ‘OK’ button,
please.

In Fig. 2.42, the value of ‘Max. Shift /

Figure 2.41: Refinement results (again).

Figure 2.42: Checking window for publication
in Acta Cryst. C (#1).

Figure 2.43: Checking window for publication
in Acta Cryst. C (#2).
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Figure 2.44: Inversion of absolute structure.

Figure 2.45: Checking window for publication
in Acta Cryst. C (#3).

Error’ has been displayed with red charac-
ters,which means it does not satisfy the valid-
ity for publication in Acta Cryst. C. There are
three levels of ALART, A, B and C. ALART
A means the most severe problem. After re-
peating the procedures of Figs. 2.39, 2.40 and
2.41 by several times, as shown in Fig. 2.43, the
ALART level has come to be B. Here, ‘Invert
structure’ should be clicked in ‘Utility’ menu in
Fig. 2.44 for inverting the molecular structure.

The procedures of Figs. 2.39, 2.40 and 2.41
should be repeated such that ‘Max. Shift / Er-
ror’ is converged to be zero and ‘Goodness of fit’
approaches to unity until improvement in values
of R1 and wR cannot be found. Figure 2.46 is

Figure 2.46: Checking window for publication
in Acta Cryst. C (#4; final).

Figure 2.47: ‘Report’ button has been clicked.

Figure 2.48: Making crystal information file.

displayed when the optimization is completed.

2.8 Making a report

2.8.1 Making an rtf file

‘Report’ button in the flow chart can be
clicked to display ‘Report’, ‘CIF’ and
‘Validate’ as shown in Fig. 2.47. Here,
‘Report’ can be clicked to display Fig. 2.48.
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Figure 2.49: Crystal information (‘*.rtf’ file).

Figure 2.50: Making ‘Cif.Cif’.

Figure 2.51: ‘Open a Browser’ button should be
clicked.

Then, ‘Create report’ button can be clicked to
make an rtf file in which crystal informations
are written partially as shown in 2.49.

2.8.2 Making CIF files

‘CIF’ button can be clicked to display Fig.
2.50. Here, ‘OK’ button can be clicked to make
‘Cif.Cif’ and finish the crystal structure analy-
sis. Then, close the window of ‘CrystalStruc-
ture’, please.

2.9 Loading a CIF file and
drawing a molecular model

After starting ‘CrystalStructure’ again,

Figure 2.52: Start window of ‘PLATON’.

Figure 2.53: ‘Cif.cif’ should be selected.

‘Open Project’ button in the flow chart can be
clicked to open the folder in which ‘Crystal-
Clear.Cif’ has been placed as shown in Fig. 2.58.
Here, ‘Cif.Cif’ should be selected for loading.
Figure 2.59 [p.18] has been displayed by se-

lecting ‘Ball and Stick’ from ‘Style’ submenu in
‘Display’ menu. The molecular structure is
displayed with red (for O), white large (for C)
and white small (for H) balls and sticks.
Figure 2.60 [p.18] has been displayed by se-

lecting ‘Thermal Ellipsoid’ from ‘Style’ sub-
menu in ‘Display’ menu. Thermal oscillation
of O11 atom is found to be anisotropic.

2.9.1 Check of CIF file

By clicking ‘Validate’ button in Fig.2.46 [p.15],
the analysis result can be checked with a
software called ‘PLATON’ placed on the web
site of IUCr. Figure 2.51 is a window displayed
by clicking the ‘Validate’ button in Fig. 2.47
[p.15]. After checking the full path of ‘Cif.Cif’
in a red flame, ‘Open a Browser’ button can be
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Figure 2.54: ‘Cif.cif’ is sent to IUCr web site by
clicking ‘Send CIF for checking’ button.

Figure 2.55: ‘PLATON’ for checking the molec-
ular structure has been opened.

Figure 2.56: Alerts on solved molecular struc-
ture.

Figure 2.57: Thermal ellipsoid model of molec-
ular structure.

Figure 2.58: Loading ‘Cif.Cif’.

clicked to open a window as shown in Fig. 2.52.
By clicking a button in a red flame in Fig. 2.52,
an explore window can be opened as shown in
Fig. 2.53. In this figure, ‘Cif.cif’ should be
double-clicked to select. About 20 seconds af-
ter that, a windows as shown in Fig 2.55 is dis-
played. In a red flame of this figure, lattice pa-
rameters, volume of unit cell and space group
are described. By slightly scrolling down, items
on which reconsideration is recommended are
shown as alerts level A, B, C and G as shown in
Fig. 2.56. By further scrolling down, as shown
in Fig. 2.57, a molecular model can be seen with
thermal ellipsoids.

2.9.2 Drawing the molecular model

After restarting ‘CrystalStructure’, click
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Figure 2.59: Thermal ellipsoid model of molec-
ular structure.

‘Open Project’ button in the flow chart and
then open a folder in which ‘Cif.cif’ is placed,
please to display a window as shown in Fig. 2.58
[p.17]. Here, load ‘Cif.cif’, please. By clicking
‘Ball and stick’ in ‘Style’ submenu in ‘Display’
menu on the menu bar, the molecular structure

Figure 2.60: Thermal ellipsoid model of molec-
ular structure.

is displayed with balls (O:red, C:gray, H:White)
and sticks.
By clicking ‘Thermal ellipsoid’ in ‘Style’ sub-

menu in ‘Display’ menu on the menu bar, Fig.
2.60 can be displayed. An anisotropy of thermal
vibration of O11 atom can be observed.
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To be continued.



Appendix A

Why should we define ‘Reciprocal
Lattice’ ?

For many students working on crystallogra-
phy, the first difficulty is understanding of re-
ciprocal lattice. In spite that the Bragg con-
dition written by (A.1) or (A.2) can easily be
understanood, why such strange ideas as re-
ciprocal lattice and reciprocal space should we
use ? This chapter describes the equivalence
of Bragg’s reflection condition, Laue’s reflection
condition and Ewald construction (Reciprocal
lattice node exists on the Ewald sphere), from
which how reasonably the reciprocal lattice is
defined can be understood.

Every space group of crystal has an extinc-
tion rule owing to its symmetry with which the
crystal structure factor comes to be zero. How-
ever, it is neglected in the following description
for simplicity.

A.1 Bragg’s reflection condi-
tion

Figure A.1 shows Bragg’s reflection condition.
This figure is also found in high school text
book. Bragg’s reflection condition can relatively
easily and intuitively referring to this figure.
When atoms (or molecules) are arranged on a
set of planes as shown in Fig. A.1. Optical path
length of X-rays drawn as a gray line are longer

than that drawn as a black line by |
−→
ab| + |

−→
bc| (=

2d sin θB). When this length is an integral mul-
tiplication of the wavelength, these rays inter-
fere constructively with each other. Therefore,
reflection condition can be described as follows,

2d sin θB = nλ. (A.1)

Figure A.1: Bragg’s reflection condition.

By redefining lattice spacing d′ to be d′ = d/n,
the following equation is also frequently used,

2d′ sin θB = λ. (A.2)

Now, let us consider why the angle of inci-
dence and emergence is identical. Is it evident
since the Bragg plane works as a mirror plane ?
Then, why are the angles of incidence and emer-
gence of a mirror identical ? Sometimes, even
a veteran of crystallography cannot answer to
this question.

A.2 Laue’s reflection condition

Laue’s reflection condition was used to explain
the phenomenon of X-ray diffraction when it
was invented by Laue (Max Theodor Felix von
Laue; 1879/10/9-1960/4/24) in 1912, which is
described referring to Fig. A.2 as follows,

R0B−AR1

=
−−−→
R0R1 · s1 −

−−−→
R0R1 · s0 = n0λ. (A.3)

Here, s0 and s1 are unit vectors in the direction
of propagation of incident and reflected X-rays.

20
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When R0 and R1 are equivalent lattice points,
difference in optical path length between black
and gray paths drawn in Fig. A.2 is given by
(A.3). When this difference in path length is
an integral multiplication of wavelength, X-rays
scattered by lattice points R0 and R1 interfere
constructively with each other.

Incidentally, since R0 and R1 are equivalent
lattice point, there is a restriction as follows,

−−−→
R0R1 = n1a+ n2b+ n3c, (A.4)

where, n1, n2 and n3 are arbitrary integers. a,
b and c are primitive translation vectors. That
is to say the left hand side of (A.3) should be
integral multiplication of wavelength for arbi-
trary integers n1, n2 and n3. Lattice points
R0 and R1 can move freely with a restriction
that these are equivalent points. The value
of left hand side of (A.3) is evidently positive

when
−−−→
R0R1 · s1>

−−−→
R0R1 · s0 and is negative when−−−→

R0R1 ·s1<
−−−→
R0R1 ·s0. Figure A.2 is drawn under

an assumption of the latter case.
However, R0 and R1 can also be taken such

that
−−−→
R0R1 · s1=

−−−→
R0R1 · s0. In the following dis-

cussion in this paragraph, R0 and R1 are fixed

such that
−−−→
R0R1 · s1=

−−−→
R0R1 · s0. When R0, R1

and optical paths drawn as black and gray lines
are all on the drawing, there should be a plane
perpendicular to the drawing that include those
points and optical paths. When X-rays are scat-
tered at any point on this plane under a condi-
tion that the angles of incidence and emergence
are the same, the optical path length is always
the same. This is also the reason for that the
angle of incidence and emergence for a mirror is
always identical.

In Bragg’s reflection condition, under an im-
plicit (the first and second dimensional) restric-
tion that optical path length are always the
same for a defined Bragg plane when the an-
gle of incidence and emergence is identical, the
third dimensional condition is given by (A.1)
or (A.2). Behind the simple condition given by
those equations, the above mentioned first and
second dimensional restrictions are hidden.

Now, for description in the next section, the
following equation is prepared by dividing the
both sides of eq. (A.3) by the wavelength λ,

−−−→
R0R1 ·

(s1
λ

− s0
λ

)
= n0. (A.5)

Figure A.2: Laue’s reflection condition.

By substituting (A.4) into the above equation
and considering that the wave vectors of inci-
dent and reflected X-rays are given by K0=s0/λ
andK1=s1/λ, the following equation can be ob-
tained,

(n1a+ n1b+ n1c) · (K1 −K0) = n0. (A.6)

A.3 Ewald’s reflection condi-
tion (Ewald construction)

A.3.1 Foundation of Ewald construc-
tion

Fig. A.3 [p.22] shows the situation that the ori-
gin O of reciprocal space and a reciprocal lattice
node Hhkl simultaneously exist on the surface of
Ewald sphere. Its center is the common initial
point of wave vectors K0 and K1.

In the description of Ewald construction, at
first, reciprocal fundmental vectors a∗, b∗ and
c∗ are defined as follows:

a∗ =
b× c

a · (b× c)
, (A.7a)

b∗ =
c× a

a · (b× c)
, (A.7b)

c∗ =
a× b

a · (b× c)
. (A.7c)

The denominator of (A.7), a· (b × c) [= b·
(c × a) = c· (a × b)] is the volume of paral-
lelepiped whose edges are a, b and c. From
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Figure A.3: Ewald sphere

the above definitions, the following equations
are evident,

a · a∗ = 1, (A.8a)

b · b∗ = 1, (A.8b)

c · c∗ = 1. (A.8c)

Further, b×c is a vector that is perpendicular
to both b and c and has a length of the area
of parallelogram whose sides are b and c. Here,
vectors b, c and b×c construct a right-handed
system. Since the above is the same for c×a and
a×b, the following relations are also evident,

a · b∗ = a · c∗ = 0, (A.9a)

b · c∗ = b · a∗ = 0, (A.9b)

c · a∗ = c · b∗ = 0. (A.9c)

That is to say, a∗, b∗ and c∗ have been defined
such that (A.8) and (A.9) are satisfied.

A reflection vector giving h k l reflection is
defined in general as follows:

−−−−→
OHhkl = ha∗ + kb∗ + lc∗. (A.10)

Here, O is the origin of reciprocal space. The
Ewald sphere is a sphere whose center is P. The

wave vector of the incident X-rays K0 is
−→
PO.

When a reciprocal lattice node Hhkl exists on
the surface of the Ewald sphere, reflected X-

rays whose wave vector K1 is
−−−−→
OHhkl are excited.

Then, the following equation is satisfied,

K1 −K0 =
−−−−→
OHhkl

= ha∗ + kb∗ + lc∗. (A.11)

Let us calculate the left-hand side of (A.6)
[p.21] by substituting (A.11) into the second
term of the left-hand side of (A.6) [p.21] and
considering (A.8) and (A.9) as follows:

(nxa+ nyb+ nzc) · (K1 −K0)

= (nxa+ nyb+ nzc) · (ha∗ + kb∗ + lc∗)
(A.12)

= nxh+ nyk + nzl. (A.13)

Since nxh + nyk + nzl is evidently an integer,
Laue’s reflection condition described by (A.3)
[p.20], (A.5) [p.21] and (A.6) [p.21], is satisfied
when the reciprocal lattice node Hhkl is on the
surface of Ewald sphere. Therefore, Ewald’s re-
flection condition is equivalent to Laue’s reflec-
tion condition. Furthermore, Ewald’s reflection
condition is also equivalent to Bragg’s reflec-
tion conditions, which is more clarified by the
description in the next section A.3.2

Bragg’s reflection condition can easily be
understood by referring to Fig. A.1 [p.20].
Laue’s reflection condition is more difficult than
Bragg’s reflection condition. However, it can
also be understood by referring to Fig. A.2
[p.21]. The drawing of Fig. A.3 in reciprocal
space was invented by Ewald. This way of
drawing is extremely effective when consider-
ing various difficult problems in crystallography
that cannot be understood by drawing figures as
shown in Fig. A.1 [p.20] and /or Fig. A.2 [p.21]
in real space. It is strongly recommended to
use the Ewald construction by using Fig. A.3
by paying respect to Ewald (Paul Peter Ewald,
1888/1/23∼1985/8/22).

A.3.2 Relation between reciprocal
lattice vector and Bragg reflec-
tion plane

Reciprocal lattice vector is a vector whose di-
rection is perpendicular to the Bragg plane and
length is 1/d′, where d′ is the lattice spacing
of the Bragg plane. These are verified in the
following paragraphs.

By considering n0 = nxh+ nyk + nzl, (A.10)
and (A.12)=(A.13), the following equation is
obtained.

−−−−→
OHhkl · (nxa+ nyb+ nzc) = n0. (A.14)
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Figure A.4: Drawing of Miller and Miller indices

By multiplying 1/|
−−−−→
OHhkl| to the both sides of

the above equation, the following equation is
obtained,

−−−−→
OHhkl

|−−−−→OHhkl|
· (nxa+ nyb+ nzc) =

n0

|−−−−→OHhkl|
.

(A.15)

A plane is described in general as follows:

[Unit normal vector] · [Location vector]

= [Distance from the origin].
(A.16)

Therefore, n0 ∈ { · · · , −2, −1, 0, 1, 2, · · · } in
(A.15) means that location vector nxa+ nyb+
nzc is on Bragg planes piled up with a spacing

of d′(= 1/|
−−−−→
OHhkl|), which reveals that the recip-

rocal lattice vector
−−−−→
OHhkl is the normal vector

of Bragg plane whose length is 1/d′.

A.4 Drawing of Miller and
Miller indices

Fig. A.4 shows the relation between the Miller
indices and the Bragg plane and is found in
almost all text books describing the crystal-
lography. This way of drawing was invented
by Miller (William Hallows Miller; 1801/4/6-
1880/5/20). However, it should be noted that

he was a mineralogist of the 19th century be-
fore X-rays and X-ray diffraction were invented.
Figs. A.1[p.20] and A.4 are found in many text
books. However, it cannot be recommended
that the students and researchers attempt to
understand the X-ray diffraction phenomena
only by referring to Figs. A.1[p.20] and A.4.

Points A, B and C in Fig. A.4 exist on a, b
and c axes, respectively. Distances of them from
the origin O are a/h, b/k and c/l. Miller in-
vented that a, b and c axes can be defined such
that all facets of crystals are drawn as shown in
Fig. A.4 with small integers h, k and l.

When h = 0, distance of A from O is inifinite
and then the plane ABC is parallel to a. This
is the case for k, B and b and for l, C and c.

h, k and l are indices of reciprocal lattice
nodes, which was clarified several decades af-
ter Miller’s invention. ABC is a plane whose
direction is parallel to the Bragg plane and dis-
tance from O is d′. These are confirmed in the
following description.

By referring to Fig. A.4,
−→
AB = −a/h + b/k

and then
−→
AB ·

−−−−→
OHhkl is calculated as follows:

−→
AB ·

−−−−→
OHhkl = (−a/h+ a/k) · (ha∗ + kb∗ + lc∗)

= −1 + 1

= 0. (A.17)

Therefore, line AB is confirmed to be per-

pemdicular to
−−−−→
OHhkl. Similarly, lines BC and

CA are confirmed to be perpendicular to
−−−−→
OHhkl.

Further, from this, the distance of ABC from
the origin O can be obtained from scalar prod-
uct between the unit normal vector of plane

ABC and vector
−→
OA,

−→
OB or

−→
OC as follows:

−→
OA · −−−−→OHhkl/|

−−−−→
OHhkl|

=
a

h
(ha∗ + kb∗ + lc∗)/|−−−−→OHhkl|

= 1/|
−−−−→
OHhkl|

= d′ (A.18)

As described above, the explanation of Fig.
A.4 needs complex descriptions. It cannot be
recommended to understand the phenomena of
X-ray diffraction only referring to the drawing
of Miller as shown in Fig. A.4.



Appendix B

Determination of space group from
extinction rule

Figure B.1: Content of ‘process.out’ (#1).
[Taurine; monoclinic P21/c(#14)].

One of the most important process in the
crystal structure analysis is determination of
space group. CrystalStructure 4.1 determines
the space group automatically as sown in Fig.
B.3.

In this chapter, how the computer determines
the space group, is described. When the com-
puter failed to determine the space group cor-
rectly, it should be determined manually refer-
ring to the description of this chapter.

Figs. B.1, B.2 and B.3 show contents of ‘pro-
cess.out’ displayed by clicking ‘View output file’
button in Fig. 2.12 of Part2a manual. In this
file, information about the extinction rule based

Figure B.2: Content of ‘process.out’ (#2).
[Taurine; monoclinic P21/c(#14)]

on which the space group can be determined,
are summarized.

Information about extinctions of reflections
whose three, two or one indices are not zero,
are summarized on parts [1], [2, 3] and [4], re-
spectively, of Fig. B.1. For example, ‘eeo’ found
on the upper part of [1] in Fig. B.1 means that
indices of hkl are even, even and odd. ‘totl’ and
‘obsd’ are numbers of total and observed reflec-
tions. <I/sig> are mean values of I/σ, where I
is observed intensity of reflected X-rays and σ is
standard deviation of background. Since values
of ‘obsd’ and <I/sig> are sufficiently large,
there is no extinction for three nonzero hkl. On
parts [2] and [3] in Fig. B.1, h0l reflections are

24
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Table B.1: 14 Bravais lattices and ‘Face-centered monoclinic’. Refer to the last paragraph of §B.2
[p.27], please about why ‘Face-centered monoclinic’ is added.

Figure B.3: Content of ‘process.out’ (#3) [Tau-
rine; monoclinic P21/c(#14)]. [setting #1] cor-
responds to ‘[1] CELL CHOICE 1’ in Fig. B.5.

recognized to distinguish since value of <I/sig>
is extremely small when l is odd. This is indi-
cated by an ‘∗’ mark. Similarly, in part [4] in
Fig. B.1, 0k0 and 00l reflections are recognized
to distinguish when k is odd and l is odd,
respectively since values of <I/sig> and ‘% of
o/e’ are extremely small. In parts [5] and [6] in

Figure B.4: Reflection condition of P21/c(#14)
described in International Tables for Crystal-
lography (2006) Vol.A. 0k0 reflections when k is
odd and, h0l and 00l reflections when l is odd,
extinguish.

Fig. B.2, information about reflection in-
dices when indices or summation of them are
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Table B.2: Symmetric elements (planes). Pro-
tein crystals do not have these symmetric ele-
ments absolutely.

divided by 4, by 3 and by 6, from which exis-
tenceof four-, three- and six-fold screw axes can
be discussed.

Fig. B.3 [p.25] shows that the space group
of taurine crystal has been determined to be
P21/c(#14).

Fig. B.4 shows reflection condition of
P21/c(#14) described in International Tables
for Crystallography (2006) Vol.A. The informa-
tion described in Figs. B.1 [p.24] and B.2 [p.24]
coincides with the condition in Fig. B.4 [p.25],
from which the space group has been deter-
mined to be P21/c(#14).

In the following description, how the extinc-
tion of reflections are caused by symmetries of
crystals depending on the space group, is ex-
plained.

B.1 Symmetric elements of
crystal derived based on
the group theory

Who showed the importance of group the-
ory to determine the crystal structure
for the first time was Shoji Nishikawa
(1884/12/5∼1952/1/5). Wyckoff (R.
W. G. Wyckoff; 1897/8/9∼1994/11/3)

Table B.3: Symmetric elements of crystal (axes
and point).

who was strongly influenced by Nishikawa, sys-
temized and established the space group the-
ory that is widespread today and summarized in
International Tables for Crystallography (2006)
Vol.A.

As shown in Table B.1 [p.25], crystals are cat-
egorized into seven crystal systems depending
on their shapes of unit cells. Further, there are
several complex lattices whose backgrounds in
Table B.1 [p.25] are green, other than primitive
cells. Fourteen kinds of lattice except for ‘body-
centered monoclinic lattice’ are called Bravais
lattice.

‘Body-centered monoclinic lattice’ was added
by the present author’s own judgment. The
reason is that base-centered monoclinic lattice
can sometimes change to body-centered lattice
without changing the symmetry of monoclinic
lattice or changing volume of unit cell by rese-
lecting axes of unit cell.

In the first column of Table B.1 [p.25], Laue
groups and ranges of space group number are
summarized. Laue group is determined by sym-
metry of reciprocal lattice of crystals.

It has been clarified that crystals can be cat-
egorized into 230 space groups depending on
the symmetric elements as shown in Tables. B.1
[p.25], B.2 and B.3.

What is important to determine the space
group is the extinction rule, about which the
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Figure B.5: Drawings for space group
P21/c(#14) in International Tables for Crystal-
lography (2006) Vol.A. Protein crystals do not
belong to this space group absolutely.

information can be extracted by referring to de-
scriptions in ‘process.out’ as shown in Figs. B.1
[p.24] and B.2 [p.24]. It can be viewed by click-
ing ‘View output file’ button in Fig. 2.21 of Part
2a manual.

B.2 Symbols of space groups

Fig. B.5 is a diagram on the first two pages
showing symmetric elements of crystal group
P121/c1 in International Tables for Crystallog-
raphy (2006) Vol.A, Chapter 7. Marks [1]-[17]
are as follows; [1]: Hermann-Mouguin notation,
[2]: Schönflies notation, [3]: Laue group, [4]:
crystal system, [5]: ordinal number of space
group, [6]: Hermann-Mouguin full notation, [7]:
unique axis, [8]: cell choice, [9]: graphic sym-
bol of c glide plane, [10]: graphic symbol of
21 screw axis, [11]: graphic symbol of sym-
metric center, [12]: graphic symbol of 21 screw
axis, [13]: graphic symbol of c glide plane, [14]:
graphic symbol of c glide plane, [15]: position
of atom,[16]: position of atom (an image due to
21 screw axis), [17]: position of atom (an image

Table B.4: Extinctions owing to complex lat-
tice.

Table B.5: Extinction rules owing to glide
planes. Protein crystals do not have glide plane
absolutely.

due to c glide plane).

‘[8] CELL CHOICE 1’ corresponds to ‘set-
ting #1’ in Fig. B.3 [p.25]. ‘14 ’ described near
[9] is the height of c glide plane. About graphic
symbols of c glide plane [9], [13] and [14], re-
fer to Table B.2 [p.26], please. About graphic
symbols of 21 screw axis [10] and [12], refer
to Table B.3 [p.26]. Atoms at positions [16]
and [17] are images of atom at [15] by sym-
metric operations due to 21 screw axis and c
glide plane, respectively. ‘12+’ near [16] and
‘12−’ near [17] means that locations of atoms
at [16] and [17] are −xa + (12 + y)b + (12 − z)c
and xa+(12 − y)b+(12 + z)c, respectively when
that of [15] is xa+ yb+ zc. Comma (,) in ‘⃝’
at [17] means that this atom (or molecule) is an
enantiomer of those at [15] and [16].

Initial character of Hermann-Mouguin nota-
tion is P (or R partially for trigonal system) for
primitive lattice, A, B or C for base-centered
lattice, I for body-centered lattice or F for
face-centered lattice. In many cases of base-
centered lattice, C is mainly used for H-M no-
tations. However, there are four exceptions,
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Table B.6: Extinction owing to screw axes.

i.e. Amm2(#38), Abm2(#39), Ama2(#40)
and Aba2(#41).

There are nine H-M full notations, i.e.
P121/c1, P121/n1, P121/a1, P1121/a,
P1121/n, P1121/b, P21/b11, P21/n11,
P21/c11 for P21/c due to arbitrariness to take
axes. There are plural H-M full notations for
an H-M notation in general. In some cases,
however, there is only one H-M full notation,
e.g. P212121 (orthorhombic #19) since it
has an identical symmetric element all in the
directions of a, b and c axes.

In the case of C2/c, one of H-M full nota-
tion is I12/a1 when changing the choice of unit
cell axes. This is the reason for ‘body-centered
monoclinic lattice’ is added in Table B.1 [p.25].

B.3 How to read extinction
rules

In this section, how to determine the space
group by reading ‘process.out’ as shown in Figs.
B.1 [p.24] and B.2 [p.24] and comparing them
with International Tables for Crystallography
(2006) Vol.A, Chapter 3.1, is described. When
the space group were determined not correctly,
it should be redetermined referring to the fol-
lowing description.

Table B.7 shows a part of International Ta-

Table B.7: International Tables for Crystallog-
raphy (2006) Vol.A, A part of International Ta-
bles for Crystallography (2006) Vol.A, Chapter
3.1.

bles for Crystallography (2006) Vol.A, Chapter
3.1. Here, relations between the extinction rule
and space group, are summarized. You can re-
fer to pdf version of International Tables for
Crystallography (2006) Vol.A, Chapter 3.1 that
is placed on the desktop of computers.

In part [1] of Fig. B.1 [p.24] reflection con-
ditions for hkl all of which are not zero, is
described. Since no extinction can be found,
the first column of Table B.7 should be empty.
h+ k, k+ l and h+ k+ l in this column means
that reflection indices that satisfies h+ k = 2n,
k+ l = 2n and h+k+ l = 2n do not distinguish.
In first, second and third column in Table B.7,
‘= 2n’ is omitted.

In the case of Fig. B.1 [p.24], 0k0 and 00l re-
flections distinguish when k is odd and when l
is odd, respectively, which corresponds to [1],
[2] and [3] rows in Table B.7. Therefore, H-M
full notation of the space group of taurine is
P121/a1, P121/c1 or P121/n1. These all be-
long to P21/c(#14).

For redesignating space group in Crystal-
Structure 4.1, ‘Space Group’ Menu window as
shown in Fig. B.6 [p.29] can be opened by
clicking ‘Space Group’ from ‘Parameters’ menu.
Since b axis is usually taken as the main axis in
the case of monoclinic crystal system, P121/c1
should be selected. Then, click ‘Apply’ and
‘OK’ in this order, please.
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Figure B.6: Redesignation of space group in
CrystalStructure 4.1. (in the case of small
molecular-weight crystal).

B.4 Examples of extinction
rules due to combinations
of symmetric elements

In this section, several examples are described,
in which the extinction rules are given by com-
binations of symmetric elements as summarized
in Tables B.4 [p.27], B.5 [p.27] and B.6.

In cases of small molecular-weight or-
ganic crystals, frequently found space groups
can be listed up in order of decreasing
as follows, P21/c(#14), P1(#2), C2/c(#15),
P212121(#19), P21(#4) . As many as 80% of
small molecular weight organic crystals are oc-
cupied by those with space groups that belong
to the above five.

In the cases of protein crystals, however,
Hermann-Morguin notations of their space
group do not have symbols of 1 (symmetric
center), m (mirror plane), a, b, c, d, e and
n (glide planes) absolutely since they need
both optical enantiomer molecules in spite
that protein molecules consist of only L amino
acids but not of D amino acids. (L and D
amino acids are optical enantiomer with each
other). Also in the cases of small molecular-
weight crystals, when they consist of chiral

Figure B.7: Drawing for P1(#2) in Interna-
tional Tables for Crystallography (2006) Vol.A.
Since this space group has symmetric center,
protein crystals do not belong to it. The phase
problem is simple (0 or π (180◦)).

Figure B.8: Drawing for C12/c1[C2/c](#15) in
International Tables for Crystallography (2006)
Vol.A. Protein crystals do not belong to this
space group absolutely since it has glide plane.

molecules, H-M notations of them do not have
1, m, a, b, c, d, e and n. In the cases of racemic
crystals, these symbols are frequently included
in their H-M notations.

Read the following description, please by re-
ferring Tables B.4 [p.27], B.5 [p.27] and B.6.

It can be read from Fig. B.5 [p.27] that space
group P21/c (P121/c1) has c glide plane and
21 screw axis in the direction of b. Reflection
conditions due to these symmetric elements can
be read from Tables B.5 [p.27] and B.6.

Reflection conditions are described in In-
ternational Tables for Crystallography (2006)
Vol.A dividing three cases in which one, two
and three indices of hkl are not zero. Fol-
lowing this rule, the reflection conditions due to
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Figure B.9: International Tables for Crystallog-
raphy (2006) Vol.A P212121(#19).

Figure B.10: International Tables for Crystal-
lography (2006) Vol.A P1211[P21(#4)].

c glide plane and 21 screw axis are described as
follows,

h0l : l = 2n,

0k0 : k = 2n,

00l : l = 2n.

This is found as shown in Fig. B.4 [p.25] in
International Tables for Crystallography (2006)
Vol.A.

Symmetric element that space group P1(#2)
has, is only symmetric center. Therefore, there
is no extinction. Protein crystals and chiral
crystals do not belong to this space group, ab-
solutely.

However, the phase problem is extremely sim-
ple (0 or π (180◦)). Therefore, the molecular
structure can be obtained frequently even for a
crystal with low quality.

Since the initial character of C12/c1 is C, it is
base-centered lattice. Since there are symmet-
ric centers indicated by small open circles, the
phase problem is very simple (0 or π (180◦)).

Then, the molecular structure can be solved
with high possibility.

Due to arbitrariness to take axes, there are
three kinds of base-centered lattice, i.e. A base-
centered, B base-centered and C base-centered
lattice. However, let us focus the discussion on
C base-centered lattice, here. The reflection
condition shown in Table B.4 [p.27] can be writ-
ten down dividing it into three cases in which
one, two and three indices are not zero, as fol-
lows, [hkl : h + k = 2n], [hk0 : h + k = 2n],
[h0l : h = 2n], [0kl : k = 2n], [h00 : h = 2n],
[0k0 : k = 2n].

Referring to Fig. B.8[p.29], we can under-
stand the existence of c glide plane, n glide
plane and 21 screw axis that are perpendicu-
lar to b axis. The reflection condition due
to c glide plane and n glide plane perpendicular
to b axis can be read to be [h0l : h, l = 2n].
Further, that due to 21 screw axis can be read
to be [0k0 : k = 2n].

The logical product of the above conditions
can be written down as follows,

hkl : h+ k = 2n,

h0l : h, l = 2n,

0kl : k = 2n,

hk0 : h+ k = 2n,

0k0 : k = 2n,

h00 : h = 2n,

00l : l = 2n.

B.4.1 OrthorhombicP212121(#19)

It is evident from Fig. B.9 that P212121(#19)
has 21 screw axes all in the directions of a, b and
c axes. Therefore, referring to Table B.6 [p.28],
the reflection condition is given as follows,

h00 : h = 2n,

0k0 : k = 2n,

00l : l = 2n.

B.4.2 MonoclinicP1211[P21(#4)]

There are three H-M full notations for space
group P21(#4). Here, the description is given
for P1211.

Space group P1211 has 21 screw axis as shown
in Fig. B.10. Therefore, as described in Table
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B.6 [p.28], it has a reflection condition as fol-
lows,

0k0 : k = 2n.

B.5 Mathematical proofs of
extinction rules

When the reader has time, refer to this chapter,
please.

The extinction of reflection is caused by the
existence of complex latticeC glide plane and
screw axis whose background color is green in
Tables B.1[p.25], B.2[p.26] and B.3[p.26]. To
the contrary, only the above three symmetric
elements give the extinction. However, protein
crystals do not have glide plane absolutely. In
this chapter, mathematical proofs of extinction
due to the above symmetric elements are de-
scribed.

For later description, let us note the definition
of crystal structure factor, Fhkl for hkl reflection
given as follows,

Fhkl =

∫
cell

ρ(r) exp[−i2π(h · r)]dv.

=

∫
cell

ρ(r) exp[−i2π(hx+ ky + lz)]dv.

(B.1)

Here,
∫
cell dv is a volume integral over a unit

cell, ρ(r) is electron density at location r (=
xa+yb+zc), and h (= ha∗+kb∗+lc∗) is a re-
ciprocal lattice vector giving h k l reflection.
With regard to reciprocal lattice, refer to Ap-
pendix A [p.20], please.

Symmetry element that makes N equivalent
points can be described as follows,

ρ[T (i)(r)] = ρ[T (0)(r)], i ∈ {0, 1, · · · , N − 1}.

Since Fhkl is zero when the N integral elements,

N−1∑
i=0

ρ[T (0)(r)] exp[−i2πh · T (i)(r)] = 0

That is to say,

N−1∑
i=0

exp[−i2πh · T (i)(r)] = 0 (B.2)

B.5.1 Extinction rules due to com-
plex lattice

Table B.4 [p.27] summarizes the extinction rules
due to complex lattice. In the following de-
scription, mathematical proofs for those due to
base-centered, body-centered and face-centered
lattice are given.

B.5.1.1 Extinction due to base-centered
lattice

Symmetry of C base-centered lattice is de-
scribed as follows,

ρ[T
(i)
C (r)] = ρ[T

(0)
C (r)], i ∈ {0, 1}.

T
(0)
C (r) = xa+ yb+ zc,

T
(1)
C (r) = (x+

1

2
)a+ (y +

1

2
)b+ zc.

The extinction condition is described similarly
to (B.2) as follows:

1∑
i=0

exp[−i2πh · T (i)
C (r)] = 0. (B.3)

Here, mathematical convenience to calculate
∑

in (B.3), let us define fC(h, r) as follows,

fC(h, r)

= exp{−i2π[h(x+
1

4
) + k(y +

1

4
) + lz]}.

Therefore, the extinction condition is described
as follows,

fC(h, r)

× {exp[−i
π

2
(h+ k)] + exp[+i

π

2
(h+ k)]}

= 2fC(h, r) cos[
π

2
(h+ k)] = 0.

Since fC(h, r) is not zero in general, the extinc-
tion condition is given by

cos[
π

2
(h+ k)] = 0.

Since the above equation is satisfied when h+k
is odd, the reflection condition (not extinct) as
shown in Table B.4 [p.27] is given by

hkl : @h+ k = 2n

Here, l is an arbitrary integer.
Reflection conditions for A and B base-

centered lattice can be derived similarly to the
above description.
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B.5.1.2 Extinction due to body-centered
lattice

Symmetry of body-centered lattice is described
as follows,

ρ[T
(i)
I (r)] = ρ[T

(0)
I (r)], i ∈ {0, 1}.

T
(0)
I (r) = xa+ yb+ zc,

T
(1)
I (r) = (x+

1

2
)a

+ (y +
1

2
)b

+ (z +
1

2
)c.

The extinction condition is described similarly
to (B.2) [p.31] as follows,

1∑
i=0

exp[−i2πh · T (i)
I (r)] = 0. (B.4)

For convenience for calculation of
∑

in (B.4),
let fI(h, r) be defined as follows,

fI(h, r) = exp{−i2π[h(x+
1

4
)

+k(y +
1

4
)

+l(z +
1

4
)]}.

Therefore, the extinction condition is given as
follows,

fI(h, r)×

{exp[− i
π

2
(h+ k + l)]

+ exp[ + i
π

2
(h+ k + l)]}

= 2fI(h, r) cos[
π

2
(h+ k + l)] = 0.

Since fI(h, r) is not zero in general, the extinc-
tion condition is given by

cos[
π

2
(h+ k + l)] = 0.

Since the above equation is satisfied when h +
k+l is odd, the reflection condition (not extinct)
as shown in Table B.4 [p.27], is given as follows,

hkl : h+ k + l = 2n

B.5.1.3 Extinction due to face-centered
lattice

Symmetry of face-centered lattice is described
as follows,

ρ[T
(i)
F (r)] = ρ[T

(0)
F (r)], i ∈ {0, 1, 2, 3}.

T
(0)
F (r) = xa+ yb+ zc,

T
(1)
F (r) = xa+ (y +

1

2
)b+ (z +

1

2
)c,

T
(2)
F (r) = (x+

1

2
)a+ yb+ (z +

1

2
)c,

T
(3)
F (r) = (x+

1

2
)a+ (y +

1

2
)b+ zc.

The extinction condition is described similarly
to (B.2) [p.31] by the following equation,

3∑
i=0

exp[−i2πh · T (i)
F (r)] = 0. (B.5)

Here, for mathematical convenience to calculate∑
in (B.5), let us define fF (h, r) as follows,

fF (h, r) = exp{−i2π[h(x+
1

4
)

+k(y +
1

4
)

+l(z +
1

4
)]}.

Therefore, the extinction condition is given as
follows,

fF (h, r){exp[−i
π

2
(−h− k − l)]

+ exp[−i
π

2
(−h+ k + l)]

+ exp[−i
π

2
(+h− k + l)]

+ exp[−i
π

2
(+h+ k − l)]} (B.6)

= 2fF (h, r){exp(+i
π

2
h) cos[

π

2
(k + l)]

+ exp(−i
π

2
h) cos[

π

2
(k − l)]} = 0.

(B.7)

Since fF (h, r) is not zero in general, the extinc-
tion condition is represented as follows,

cos[
π

2
(k + l)] = 0,

cos[
π

2
(k − l)] = 0.



B.5. MATHEMATICAL PROOFS OF EXTINCTION RULES 33

[(k + l is even) and (k − l is even)] is identical
to [(both k and l are even) or (both k and l are
od)] i.e. k + l = 2n. Here, h is an arbitrary
integer. Since (B.6) is symmetrical for h, k and
l, equations similar to (B.7) can be derived also
for h+ k, h− k and h+ l, h− l. Then, The re-
flection condition (not distinguishing) as shown
in Table B.4 [p.27] is given by

hkl : h+ k = 2n,

hkl : h+ l = 2n,

hkl : l + k = 2n.

That is to say, reflection distinguishes when
even and odd integers are mixed in h, k and
l.

B.5.2 Extinction owing to glide axes

In cases of protein crystals, they do not have
glide axis absolutely since they consist of only
L amino acids but of not D amino acids (optical
isomers of L amino acids).

B.5.2.1 Extinction due to axial glide plane

Symmetry due to c glide plane perpendicular to
b axis whose height is 1

4 b, is given by

ρ[T
(i)
Bc(r)] = ρ[T

(0)
Bc (r)], i ∈ {0, 1}.

T
(0)
Bc (r) = xa+ yb+ zc,

T
(1)
Bc (r) = xa+ (

1

2
− y)b+ (

1

2
+ z)c,

Similarly to (B.2) [p.31], the extinction condi-
tion is given by

1∑
i=0

exp[−i2πh · T (i)
Bc(r)] = 0. (B.8)

Here, for mathematical convenience to calculate∑
in (B.8) [p.33], let us define fBc(h, r) as fol-

lows,

fBc(h, r) = exp{−i2π[hx+ k
1

4
+ l(

1

4
+ z)]}.

fBc(h, r)×{
exp{+i2π[k(

1

4
− y) + l

1

4
]}

+exp{−i2π[k(
1

4
− y) + l

1

4
]}
}

= 2fBc(h, r) cos{
π

2
[k(1− 4y) + l]} = 0.

Since fF (h, r) is not zero in general, reflections
distinguish when the term of cos{ } is zero, i.e.
when h is arbitrary, k = 0 and l is odd, the
reflection condition as shown in Table B.5 [p.27]
is given by

h0l : l = 2n

B.5.2.2 Extinction due to double glide
plane (e glide plane)

Therefore, Symmetry due to double glide plane
(e glide plane) whose height is zero, is described
as follows,

ρ[T
(i)
Be(r)] = ρ[T

(0)
Be (r)], i ∈ {0, 1, 2, 3}.

T
(0)
Be (r) = xa+ yb+ zc,

T
(1)
Be (r) = (x+

1

2
)a− yb+ zc,

T
(2)
Be (r) = xa− yb+ (z +

1

2
)c,

T
(3)
Be (r) = (x+

1

2
)a+ yb+ (z +

1

2
)c,

Similarly to (B.2) [p.31], the extinction rule is
described by

3∑
i=0

exp[−i2πh · T (i)
Be(r)] = 0. (B.9)

Here, for mathematical convinience to calculate∑
in (B.9), let us define fBe(h, r) as follows,

fBe(h, r) = exp{−i2π[h(
1

4
+ x) + l(

1

4
+ z)]}.

Therefore, the extinction condition can be de-
scribed as follows,

fBe(h, r)×{
exp{−i2π[−h

1

4
+ ky − l

1

4
]}

+exp{−i2π[+h
1

4
− ky − l

1

4
]}

+exp{−i2π[−h
1

4
− ky + l

1

4
]}

+exp{−i2π[+h
1

4
+ ky + l

1

4
]}
}

= 2fBe(h, r)×{
exp(−i2πky) cos[

π

2
(h+ l)]

+ exp(+i2πky) cos[
π

2
(h− l)]

}
= 0.
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Since fBe(h, r) and exp(±i2πky) are not zero in
general, the above extinction condition is satis-
fied when cos[π2 (h + l)] = 0cos[π2 (h − l)] = 0.
hkl reflections distinguishes when both h + l
and h− l are odd, i.e. when k is arbitrary and
[(h,kareodd)or(h, k are even)]. The reflection
condition (not extinct) is given by

hkl : h+ l = 2n

With regard to other double glide planes, ex-
tinction rules as shown in Table B.5 [p.27] can
be derived in a similar way.

B.5.2.3 Extinction due to diagonal glide
plane

Symmetry due to diagonal glide plane (n glide
plane) whose height is zero, is described as fol-
lows,

ρ[T
(i)
Bn(r)] = ρ[T

(0)
Bn(r)], i ∈ {0, 1}.

T
(0)
Bn(r) = xa+ yb+ zc,

T
(1)
Bn(r) = (

1

2
+ x)a− yb+ (

1

2
+ z)c,

The extinction condition is described similarly
to (B.2) [p.31] as follows,

1∑
i=0

exp[−i2πh · T (i)
Bn(r)] = 0. (B.10)

Here, mathematical convenience to calculate
∑

in (B.10), let us define fBn(h, r) as follows,

fBn(h, r) = exp{−i2π[h(
1

4
+ x) + l(

1

4
+ z)]}.

Therefore, the extinction condition is described
as follows,

fBn(h, r)×{
exp{−i2π[−h

1

4
+ ky − l

1

4
]}

+exp{−i2π[h
1

4
− ky + l

1

4
]}
}

= 2fBn(h, r) cos{
π

2
[4ky − (h+ l)]} = 0.

Since fBn(h, r) is not zero in general, hkl re-
flections distinguish when the term of cos{ } is
zero. Therefore, the reflection condition (not
extinct) is described as follows,

h0l : h+ l = 2n

With regard to other orthogonal glide plane, re-
flection conditions as summarized in Table B.5
[p.27] can be derived.

B.5.3 Extinction due to screw axes

Table B.6 [p.28] summarizes extinction rules
due to pq screw axes. Here p ∈ {2, 3, 4, 6} and
q ∈ {1, · · · , p−1}, pq screw axis makes p equiv-
alent points such that they translate by qc/p,
(qa/p or qb/p) when rotated by 2π/p around
the axis. As summarized in Table B.6 [p.28],
reflection condition [00l : l = 2n] is given by
21, 42 and 63 screw axes since they make layers
of atoms (molecules) whose spacing is c, (a or
b).

Similarly, reflection conditions [000l : l =
3n] for 31, 32, 62, 64 screw axes, [00l : l = 4n]
for 41, 43 screw axes and [000l : l = 6n] for 61,
65screw axes can be derived. For mathemati-
cal proof of reflection conditions for three- and
six-fold screw axes, refer to Appendix C [p.37],
please.

In the following description, mathematical
proofs of extinction rules due to 21, 41 and 42
screw axes.

B.5.3.1 Extinction due to 21 screw axis

Symmetry of 21 screw axis in the direction of c
located at 1

2 a+ 1
2 b, is described as follows,

ρ[T
(i)
21

(r)] = ρ[T
(0)
21

(r)], i ∈ {0, 1}.

T
(0)
21

(r) = (
1

2
+ x)a+ (

1

2
+ y)b+ zc,

T
(1)
21

(r) = (
1

2
− x)a+ (

1

2
− y)b+ (

1

2
+ z)c.

The extinction condition is described similarly
to (B.2) [p.31] as follows,

1∑
i=0

exp[−i2πh · T (i)
21

(r)] = 0. (B.11)

Here, for mathematical convinience to calculate∑
of (B.11), let us define f21(h, r) as follows,

f21(h, r) = exp{−i2π[h
1

2
+ k

1

2
+ l(

1

4
+ z)]}.

Therefore, summation in (B.11) can be de-
formed to give the following extinction condi-
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tion,

f21(h, r)×{
exp{−i2π[hx+ ky − l

1

4
]}

+exp{−i2π[−hx− ky + l
1

4
]}
}

= f21(h, r)×

cos{ π

2
[4(hx+ ky)− l]} = 0.

Since term of cos{ } is zero when h, k = 0 and l
is odd, the reflection condition (not extinct) is
given by

00l : l = 2n.

Similarly, the reflection conditions due to c
and a screw axes can be obtained as summa-
rized in Table B.6 [p.28].

B.5.3.2 Extinction due to 41 screw axis

Symmetry due to 41 screw axis that is located
at the origin, can be described as follows,

ρ[T
(i)
41

(r)] = ρ[T
(0)
41

(r)], i ∈ {0, 1, 2, 3}.

T
(0)
41

(r) = +xa+ yb+
1

8
c,

T
(1)
41

(r) = −ya+ xb+
3

8
c,

T
(2)
41

(r) = −xa− yb+
5

8
c,

T
(3)
41

(r) = +ya− xb+
7

8
c.

Here, the extinction condition is described sim-
ilarly to (B.2) [p.31] as follows,

3∑
i=0

exp[−i2πh · T (i)
41

(r)] = 0. (B.12)

Here, let us define f41(h, r) as follows,

f41(h, r) = exp(−i2πl
1

2
).

Therefore, summation in (B.12) can be de-
formed to give the following extinction condi-

tion,

f41(h, r)×{
exp[−i2π(+hx+ ky − l

3

8
)]

+ exp[−i2π(−hy + kx− l
1

8
)]

+ exp[−i2π(−hx− ky + l
1

8
)]

+ exp[−i2π(+hy − kx+ l
3

8
)]
}

= 2f41(h, r)×{
exp(+i2πl

1

8
) cos{ π

2
[4(hx+ ky)− l]}

+exp(−i2πl
1

8
) cos{ π

2
[4(hy − kx) + l]}

}
= 0.

When h, k = 0 and l is even, cos{ } in the first
and second terms of the above equation have an
identical value (1 or −1). Under an assumption
that this condition is satisfied, let us discuss the
condition that the above equation gives value of
zero as follows,

exp(−i2πl
1

8
) + exp(−i2πl

1

8
)

= 2 cos(
π

2
· l

2
) = 0.

The above equation means that reflections dis-
tinguish when l/2 is odd. Therefore, the reflec-
tion condition (not extinct) can be described as
follows,

00l : l = 4n.

Similarly, reflection condition due to 43 screw
axis can be obtained.

B.5.3.3 Extinction due to 42 screw axis

Symmetry due to 42 screw axis at the origin can
be describes as follows,

ρ[T
(i)
42

(r)] = ρ[T
(0)
42

(r)], i ∈ {0, 1, 2, 3}.

T
(0)
42

(r) = +xa+ yb+
1

4
c,

T
(1)
42

(r) = −ya+ xb+
3

4
c,

T
(2)
42

(r) = −xa− yb+
1

4
c,

T
(3)
42

(r) = +ya− xb+
3

4
c.
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A point translates by 2
4 c when rotating by 2π

4
around the axis. Here, note that the heights

of T
(2)
42

(r) and T
(3)
42

(r) are 5
4 c and 7

4 c which

are equivalent to 1
4 c, 3

4 c due to translation
symmetry of unit cell.

The, the extinction condition is described
similarly to (B.2) [p.31] as follows,

3∑
i=0

exp[−i2πh · T (i)
42

] = 0. (B.13)

Here, for mathematical convenience to calculate∑
in (B.13), let f42(h, r) be dfined as follows,

f42(h, r) = exp[−i2π(l
1

2
)].

f42(h, r) Therefore, deforming the
∑

of
(B.13), the extinction condition can be obtained
as follows,

f42(h, r)×{
exp[−i2π(+hx+ ky − l

1

4
)]

+ exp[−i2π(−ky + hx+ l
1

4
)]

+ exp[−i2π(−hx− ky − l
1

4
)]

+ exp[−i2π(+kx− hy + l
1

4
)]
}

= 2f42(h, r)×{
exp(+i2πl

1

4
) cos[2π(hx+ ky)]

+ exp(−i2πl
1

4
) cos[2π(kx− hy)]

}
= 0.

The above extinction can be discussed when the
content of cos[ ] is zero. Under the assumption
that the above condition is satisfied, the above
equation can be further deformed as follows,

exp(−i2πl
1

4
) + exp(+i2πl

1

4
)

= 2 cos(
π

2
l) = 0.

Therefore, the reflection condition (not extinct)
can be described as follows,

00l : l = 2n.

Reflection condition due to 63 screw axis is the
same as the above description. With regard
to this, refer to §C.2.5 [p.42] in Appendix C,
please.



Appendix C

Reflection indeices and extinction
rules in the cases of trigonal and
hexagonal crystals

Figure C.1: International Tables for Crys-
tallography (2006) Vol.A, Symmetric elements.
P3121(#152).

Read this chapter when the reader has time,
please.

In cases of trigonal and hexagonal crystal sys-
tem, reflection vectors are usually indexed by
four integers, h k i l(h+ k+ i = 0). This chap-
ter describes the reasonableness of this way of
indexing and the extinction rules due to three-
and six-fold screw axes.

C.1 Cases of trigonal system

C.1.1 Diagram shown in Interna-
tional Tables for Crystallogra-
phy (2006) Vol.A

Fig. C.1 is a diagram in International Ta-
bles for Crystallography (2006) Vol.A that

Figure C.2: International Tables for Crys-
tallography (2006) Vol.A, Positions of atoms.
P3121(#152).

shows symmetric elements of space group
P3121(#152). Fig. C.2 shows atomic coordi-
nates of P3121(#152).

The unit cell is usually taken to be a rhombus
that consists of two regular triangles as shown in
Figs. C.1 and C.2. Space group P3121(#152)
has three-fold screw axis in the direction of c
axis and two-fold screw axis perpendicular to
c axis. However, in the case of trigonal sys-
tem, there is no extinction due to the two-fold
screw axis. About this, refer to the description
in §C.1.4 [p.39], please.

37
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C.1.2 Real and reciprocal coordi-
nates

Fig. C.3 shows real and reciprocal primitive
translation vectors in the cases of trigonal and
hexagonal crystal system.

a, b and c axes are usually taken such that
the angle spanned by a and b axes is 120◦ and
c is parallel to three-fold rotation or screw axis.
There are three way of taking a and b axes as
shown in Fig. C.3 i.e. combinations of a0 and
b0 axes, a1 and b1 axes and a2 and b2 axes.

reciprocal primitive vectors are defined as fol-
lows:

a∗ =
b× c

a · (b× c)
,

b∗ =
c× a

a · (b× c)
,

c∗ =
a× b

a · (b× c)
.

About the reasonableness of the above defini-
tion, refer to Appendix A [p.20], please.

By following the above definition, in Fig.
C.3, real (black) and reciprocal (gray) primi-
tive translation vectors are drawn. Referring to
this figure, the following relations can easily be
understood,

a∗0 = −b∗
1

= −a∗2 + b∗
2,

b∗
0 = a∗1 − b∗

1

= −a∗2.

From the above relations, reciprocal lattice vec-
tor ha∗0 + kb∗

0 + lc∗ can also be represented as
follows:

ha∗0 + kb∗
0 + lc∗

= ka∗1 + ib∗
1 + lc∗

= ia∗2 + hb∗
2 + lc∗,

where, h+ k + i = 0.

By using four indices h, k, i and l (h+k+i = 0)
to describe reflections, we can easily understand
the equivalence of reflections due to three-fold
symmetry. For example, a reflection described
as 1 1 0 by using a∗0-b

∗
0-c

∗ coordinate system is
equivalent to 1 2 0 by a∗1-b

∗
1-c

∗ system and also
to 2 1 0 by a∗2-b

∗
2-c

∗ system. This reflection
1 1 2 0 described using four indices can easily
be understood to be equivalnt to 1 2 1 0 and
2 1 1 0.

Figure C.3: Real (black) and reciprocal (gray)
primitive translation vectors.

C.1.3 Derivation of extinction rule
due to 31 screw axis

Similarly to the description in Appendix B §B.5
[p.31], the extinction due to 31 screw axis can
be derived as follows.
Symmetry due to 31 screw axis at the origin

is described as follows:

ρ[T
(i)
31

(r)] = ρ[T
(0)
31

(r)], i ∈ {0, 1, 2}.

T
(0)
31

(r) = xa0 + yb0 + zc,

T
(1)
31

(r) = xa1 + yb1 + (
1

3
+ z)c,

T
(2)
31

(r) = xa2 + yb2 + (
2

3
+ z)c. (C.1)

On the other hand, referring to Fig. C.3, the
following relations are evident.

a1 = b0,

b1 = −a0 − b0,

a2 = −a0 − b0,

b2 = a0,

Substituting the above equation into (C.1),

ρ[T
(i)
31

(r)] = ρ[T
(0)
31

(r)], i ∈ {0, 1, 2}.

T
(0)
31

(r) = xa0 + yb0 + zc,

T
(1)
31

(r) = −ya0 + (x− y)b0 + (
1

3
+ z)c,

T
(2)
31

(r) = (−x+ y)a0 − xb0 + (
2

3
+ z)c.



C.1. CASES OF TRIGONAL SYSTEM 39

The extinction condition can be described sim-
ilarly to (B.2) [p.31] as follows:

2∑
i=0

exp[−i2πh · T (i)
31

(r)] = 0. (C.2)

Here, for mathematical convenience to calculate∑
of (C.2), let us define f31(h, r) as follows:

f31(h, r) = exp[−i2π(lz)].

Therefore, (C.2) can be deformed as follows:

f31(h, r)×{
exp{−i2π[hx+ ky]}

+exp{−i2π[−hy + k(x− y) + l
1

3
]}

+exp{−i2π[+h(−x+ y)− kx+ l
2

3
]}
}
= 0.

Since terms [hx + ky], [−hy + k(x − y)] and
[h(−x+y)−kx] in exp{ } of the above equation
depend on value of x and y, the extinction can
be discussed only when h = k = i = 0. Under
this condition, the extinction condition can be
described as follows:

1 + exp(−i2πl
1

3
) + exp(−i2πl

2

3
) = 0.

The second and third terms of on the left-
hand side of the above equation are 1 and
1 not giving extinction when l = 3n,
exp(−i2π 1

3 ) and exp(−i2π 2
3 ) giving extinc-

tion and exp(−i2π 2
3 ) and exp(−i2π 1

3 ) giving
extinction. Therefore, the reflection condition
can be described as follows:

000l : l = 3n.

With similar consideration, the same reflec-
tion condition for 32 can be derived.

C.1.4 On the absence of extinction
due to 21 screw axis perpendic-
ular to c.

In Fig. C.1 [p.37], there are 21 screw axes per-
pendicular to c at positions of x = 1

2 and
y = 1

2 . However, these 21 screw axes cause
no extinction. The reason is that the angle
spanned by a and a∗ and that spanned by b
andb∗ are not zero (not parallel). About this,
refer to the following description, please.

Symmetric operation due to rotation around
a0 is represented by movement of point on a
plane perpendicular to a0. Referring to Fig.
C.3, reciprocal vectors perpendicular to a0 are
c∗0 and b∗

0. A real vector parallel to b∗
0 is repre-

sented by a linear combination of a0 and b0,
as 1

2 a0 + b0. Therefore, Symmetry due to
21 screw axis in the direction of a0 located at
(y, z) = 1

2 , 1
3 is represented as follows:

ρ[T
(i)
21

(r)] = ρ[T
(0)
21

(r)], i ∈ {0, 1}.

T
(0)
21

(r) = xa0

+ (
1

2
+ y)(

1

2
a0 + b0)

+ (
1

3
+ z)c

= (x+
1

4
+

1

2
y)a0

+ (
1

2
+ y)b0

+ (
1

3
+ z)c,

T
(1)
21

(r) = (
1

2
+ x)a0

+ (
1

2
− y)(

1

2
a0 + b0)

+ (
1

3
− z)c

= (x+
3

4
− 1

2
y)a0

+ (
1

2
− y)b0

+ (
1

3
− z)c.

The extinction condition (while not existing) is
represented similarly to (B.2) [p.31] as follows:

1∑
i=0

exp[−i2πh · T (i)
21

(r)] = 0. (C.3)

Here, for mathematical convenience to calculate∑
of (C.3), let us define f21(h, r) as follows:

f21(h, r) = exp{−i2π[h(
1

2
+ x) + k

1

2
+ l

1

3
]}.

Therefore,
∑

of (C.3) can be deformed as fol-
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Figure C.4: International Tables for Crys-
tallography (2006) Vol.A, Symmetric elements.
P6122(#178).

lows:

f21(h, r)×{
exp{−i2π[h(

1

4
− 1

2
y)− ky − lz]}

+exp{−i2π[−h(
1

4
− 1

2
y) + ky + lz]}

}
= f21(h, r)×

cos{2π[h( 1

4
− 1

2
y)− ky − lz]} = 0.

The above equation reveals that there is no ex-
tinction due to 21 screw axis perpendicular to
c since terms of h, k and l all depend to values
of y or z. The second term −h 1

2 y in cos{ }
of the above equation exists since a0 is not par-
allel to a∗0. If there were a reciprocal primi-
tive vector parallel to the screw axis, we can
discuss the extinction under the condition that
k, l = 0. When there is no reciprocal primitive
vector parallel to the screw axis, there is no ex-
tinction due to it.

In a similar way, it can be verified that there
is no extinction due to screw axes parallel to b0

or a0 + b0.

C.2 Case of hexagonal system

C.2.1 Figure shown in Interna-
tional Tables for Crystallogra-
phy (2006) Vol.A

Fig. C.4 is a drawing for space group
P6122(#178) in International Tables for Crys-

Figure C.5: International Tables for Crys-
tallography (2006) Vol.A, Positions of atoms.
P6122(#178).

tallography (2006) Vol.A that shows symmetric
elements. Fig. C.5 shows coordinates of atoms.

The unit cell is usually taken similarly to that
in the case of trigonal system as shown in Fig.
C.1 [p.37] and C.2 [p.37]. There are 21 screw
axes perpendicular to c. However they do not
cause extinction similarly to the case of trigonal
system.

C.2.2 Coordinates for describing six-
fold screw axes

For describing positions of atoms that are ro-
tated by i

62π (i ∈ {0, 1, 2, 3, 4, 5}) from the orig-
inal position, let us prepare combinations of ai
and bi as follows:

ai bi i

a0 b0 0
a0 + b0 −a0 1
b0 −a0 − b0 2
−a0 −b0 3
−a0 − b0 a0 4
−b0 a0 + b0 5

By using the above coordinates, positions that
is rotated by i

62π (i ∈ {0, 1, 2, 3, 4, 5}) from the
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original position can be written as follows:

x0 = x, y0 = y,

x1 = x− y, y1 = x,

x2 = −y, y2 = x− y,

x3 = −x, y3 = −y,

x4 = −x+ y, y4 = −x,

x5 = y, y5 = −x+ y.

C.2.3 Derivation of extinction rule
due to 61 screw axis

Symmetry due to 61 screw axis located at the
origin in the direction of c, is described as fol-
lows:

ρ[T
(i)
61

(r)] = ρ[T
(0)
61

(r)], i ∈ {0, 1, 2, 3, 4, 5}.

T
(0)
61

(r) = xa0 + yb0 + zc,

T
(1)
61

(r) = (x− y)a0 + xb0 + (
1

6
+ z)c,

T
(2)
61

(r) = −ya0 + (x− y)b0 + (
2

6
+ z)c,

T
(3)
61

(r) = −xa0 − yb0 + (
3

6
+ z)c,

T
(4)
61

(r) = (−x+ y)a0 − xb0 + (
4

6
+ z)c,

T
(5)
61

(r) = ya0 + (−x+ y)b0 + (
5

6
+ z)c.

Similarly to (B.2) [p.31], the extinction condi-
tion is described as follows:

5∑
i=0

exp[−i2πh · T (i)
61

(r)] = 0. (C.4)

For mathematical convenience, let us define
f61(h, r) as follows:

f61(h, r) = exp[−i2π(lz)].

From (C.4), the extinction condition is obtained
as follows:

f61(h, r)×{
exp{−i2π[hx+ ky]}

+exp{−i2π[h(x− y) + kx+ l
1

6
]}

+exp{−i2π[−hy + k(x− y) + l
2

6
]}

+exp{−i2π[−hx− ky + l
3

6
]}

+exp{−i2π[h(−x+ y)− kx+ l
4

6
]}

+exp{−i2π[hy + k(−x+ y) + l
5

6
]}
}
= 0.

The extinction can be discussed only when h =
k = i = 0. Under this condition, the above
extinction condition can be described as follows:

1

+ exp(−i2πl
1

6
)

+ exp(−i2πl
2

6
)

+ exp(−i2πl
3

6
)

+ exp(−i2πl
4

6
)

+ exp(−i2πl
5

6
) = 0. (C.5)

When l = 6n, reflections do not distinguish.
When l = 6n + i (i ∈ {1, 2, 3, 4, 5}), reflections
distinguish since phase interval of the six term
is an identical value −2π i

6 . The reflection con-
dition (not extinct) can be described a follows,

hkil : l = 6n.

Similarly, the same reflection condition can
be derived also for 61 screw axis.

In Fig. C.4, 21 and 31 screw axes in the direc-
tion of c are found. However, the logical prod-
uct of reflection conditions due to 61, 21 and 31
screw axes gives the same reflection condition
as described in the above equation.
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C.2.4 Derivation of the extinction
due to 62 screw axis

The extinction condition due to 62 screw axis is
given similarly to (C.5) [p.41] as follows:

1

+ exp(−i2πl
1

3
)

+ exp(−i2πl
2

3
)

+1

+ exp(−i2πl
1

3
)

+ exp(−i2πl
2

3
) = 0.

When l = 3n, reflections do not distinguish
since the six term have an identical value unity.
When l = 3n + i (i ∈ {1, 2}), reflections dis-
tinguish since phase interval of the six term is
an identical value −2π i

3 . Then, the reflection
condition (not extinct) is given by

hkil : l = 3n.

In a similar way, the same reflection condition

can be derived for 64 screw axis.

C.2.5 Derivation of extinction rule
due to 63 screw axis

An equation for 63 screw axis that corresponds
to (C.5) [p.41] is given by

1

+ exp(−i2πl
1

2
)

+1

+exp(−i2πl
1

2
)

+1

+exp(−i2πl
1

2
) = 0.

When l is even, all terms are unity giving no ex-
tinction. When l is odd, reflections distinguish
since phase interval of the six terms is an iden-
tical value −2π 1

2 giving extinction. Therefore,
the reflection condition (not extinct) is given by

hkil : l = 2n.

End of the document.
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